
Regression modelling with a categorical exposure

Corinne Riddell

November 22, 2021

Learning objectives for today

• Learn how to generalize the simple regression model to the case when the x variable is categorical (and
y is still continuous)

• Learn how to run these models in R

Example

Calcium is an essential mineral that regulates the heart, is important for blood clotting and for building
healthy bones. The National Osteoporosis Foundation recommends a daily calcium intake of 1000-1200
mg/day for adult men and women. While calcium is contained in some foods, most adults do not get enough
calcium in their diets and take supplements. Unfortunately some of the supplements have side effects such as
gastric distress, making them difficult for some patients to take on a regular basis.

A study is designed to test whether there is a difference in mean daily calcium intake in adults with normal
bone density, adults with osteopenia (a low bone density which may lead to osteoporosis) and adults with
osteoporosis. Adults 60 years of age with normal bone density, osteopenia and osteoporosis are selected at
random from hospital records and invited to participate in the study. Each participant’s daily calcium intake
is measured based on reported food intake and supplements. The data are shown below.

The data

#students, don't worry about knowing the next lines of code. Just have a look at
#the dataset so you understand what variables it contains
normal <- c(1200, 1000, 980, 900, 750, 800)
osteopenia <- c(1000, 1100, 700, 800, 500, 700)
osteoporosis <- c(890, 650, 1100, 900, 400, 350)

calcium_data <- data.frame(calcium_intake = c(normal, osteopenia, osteoporosis),
type = c(rep("normal", 6), rep("osteopenia", 6),

rep("osteoporosis", 6)),
type_num = c(rep(1, 6), rep(2, 6), rep(3, 6)))

calcium_data

calcium_intake type type_num
1 1200 normal 1
2 1000 normal 1
3 980 normal 1
4 900 normal 1
5 750 normal 1
6 800 normal 1
7 1000 osteopenia 2
8 1100 osteopenia 2

1

9 700 osteopenia 2
10 800 osteopenia 2
11 500 osteopenia 2
12 700 osteopenia 2
13 890 osteoporosis 3
14 650 osteoporosis 3
15 1100 osteoporosis 3
16 900 osteoporosis 3
17 400 osteoporosis 3
18 350 osteoporosis 3

Refresher on lm()

• So far, we ran linear regression when both the outcome and explanatory variables were continuous
• We can also use linear regression when the outcome is continuous, but the explanatory variable is

categorical
• In today’s lecture we learn how to run and interpret these sorts of models

Running linear regression using a categorical explanatory variable

The first thing you want to do is check how the categorical variable is coded and change the order of the
categorical (factor variable) if you need to.
str(calcium_data)

'data.frame': 18 obs. of 3 variables:
$ calcium_intake: num 1200 1000 980 900 750 800 1000 1100 700 800 ...
$ type : chr "normal" "normal" "normal" "normal" ...
$ type_num : num 1 1 1 1 1 1 2 2 2 2 ...

This shows us that type is coded as “chr”, which stands for character. This means it isn’t yet stored as a
factor variable, which is what we want to have for including in the analysis.

Making type a factor variable

This code updated the variable type to be stored as a factor variable. We overwrote the original variable,
but you might want to rename it “type2” within mutate so you can compare the new and old variables if
you’re doing this for your first time!
calcium_data <- calcium_data %>% mutate(type = factor(type))
str(calcium_data)

'data.frame': 18 obs. of 3 variables:
$ calcium_intake: num 1200 1000 980 900 750 800 1000 1100 700 800 ...
$ type : Factor w/ 3 levels "normal","osteopenia",..: 1 1 1 1 1 1 2 2 2 2 ...
$ type_num : num 1 1 1 1 1 1 2 2 2 2 ...

Now we can see that type is a Factor variable with three levels. It is sorted alphabetically, which for our
purposes is okay because we would like “normal”, the first category, to be the referent group.

Referent group: The group that the others will be compared to. Here, we will compare the osteopenia
and osteoporosis groups to the normal group. Oftentimes, we set the referent group to be the level with the
relatively best health outcome compared to the other groups, or the group with the largest sample size.

Defining a new referent group

If you wanted to change the referent group, you could use fct_relevel(), which we used in Part I of the
course.

2

calcium_data <- calcium_data %>% mutate(type_reordered = fct_relevel(type, "osteoporosis")) #makes osteoporosis the referent level.

levels(calcium_data$type_reordered)

[1] "osteoporosis" "normal" "osteopenia"

• We will run two regressions, one with type as the explanatory variable and the other with
type_reordered as the explanatory variable to see how their outputs differ.

Linear regression when x is categorical

Recall the form of the regression model when x and y are both continuous:

y = a + bx

We can write this more precisely. The predicted value for individual i is represented by:

ŷi = â + b̂xi

Suppose you have a categorical variable with three levels. Then the new form of the regression model is:

ŷi = â + b̂1 × [i’s category == osteopenia] + b̂2 × [i’s category == osteoporosis]

Linear regression when x is categorical

General form of regression model for categorical x variable with three levels:

ŷi = â + b̂1 × [i’s category == osteopenia] + b̂2 × [i’s category == osteoporosis]

• When an individual is in the normal bone density category, then both category == osteopenia and
category == osteoporosis are FALSE and the regression model simplifies to:

ŷi = â

• When an individual is in the osteopenia bone density category, then category == osteopenia is
TRUE and category == osteoporosis is FALSE and the regression model simplifies to:

ŷi = â + b̂1

• When an individual is in the osteoporosis bone density category, then category == osteopenia is
FALSE and category == osteoporosis is TRUE and the regression model simplifies to:

ŷi = â + b̂2

Thus, when x is categorical, the regression model predicts each individual’s measure to be at the mean for
that category.

3

Running lm() on categorical x data

library(broom)
calcium_lm <- lm(calcium_intake ~ type, data = calcium_data)

tidy(calcium_lm)

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 938. 95.4 9.83 0.0000000625
2 typeosteopenia -138. 135. -1.02 0.322
3 typeosteoporosis -223. 135. -1.65 0.119

Interpretation of the output:

• The intercept is equal to 938.33. This is the average calcium intake for a person with normal density.
• The coefficient for “osteopenia” is equal to -138.33. This means that individuals with osteopenia had

calcium intakes that are on average 138.33 lower than individuals with normal bone density.
• The coefficient for “osteoporosis” is equal to -223.33. This means that individuals with osteoporosis

had calcium intakes that are on average 223.33 lower than individuals with normal bone density.

Running lm() on categorical x data

The coefficient estimates based on the model agree with what we calculate by hand:
calcium_data %>%

group_by(type) %>%
summarise(mean = mean(calcium_intake))

A tibble: 3 x 2
type mean
<fct> <dbl>
1 normal 938.
2 osteopenia 800
3 osteoporosis 715

• Note that 800 is 138.33 lower than 938.33
• Note that 715 is 223.33 lower that 938.33

Tests and p-values based on the linear model

library(broom)
calcium_lm <- lm(calcium_intake ~ type, data = calcium_data)

tidy(calcium_lm)

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 938. 95.4 9.83 0.0000000625
2 typeosteopenia -138. 135. -1.02 0.322
3 typeosteoporosis -223. 135. -1.65 0.119

• We can also interpret these p-values. What is the null hypothesis?
• For the second row, the null hypothesis is that the regression coefficient for osteopenia is equal to 0.

That is, the mean calcium intake for patients with osteopenia is equal to the mean for those with

4

normal bone density.
• The p-value is 0.32, so we do not reject the null hypothesis.

predict function to get 95% confidence intervals

We can use R code to calculate the 95% confidence intervals for the means:
newdata = data.frame(type=c("normal", "osteopenia", "osteoporosis")) #make a tiny data frame storing the three categorical levels
predictions <- data.frame(predict(calcium_lm, newdata, interval="confidence")) #predict calcium intake for each row in newdata, i.e., for each level of the categorical variable
predictions$type <- c("normal", "osteopenia", "osteoporosis") #append another row to the data frame with the category labels
predictions

fit lwr upr type
1 938.3333 734.9026 1141.7641 normal
2 800.0000 596.5693 1003.4307 osteopenia
3 715.0000 511.5693 918.4307 osteoporosis

Plot the observed data, the predicted means and their 95% CIs

What does this remind you of? It looks like the plots we made when we did ANOVA!
ggplot(data = calcium_data, aes(x = type, y = calcium_intake)) + geom_point() +

geom_point(data = predictions, aes(y = fit), col = "red") +
geom_segment(data = predictions, aes(y = lwr, yend = upr, xend = type), col = "red") +
theme_minimal()

500

750

1000

normal osteopenia osteoporosis
type

ca
lc

iu
m

_i
nt

ak
e

5

Run the model again using the type_reordered as the exposure variable

• Recall that type_reordered contains the same factor variable but with osteoporosis as the reference
group

levels(calcium_data$type_reordered)

[1] "osteoporosis" "normal" "osteopenia"

• Write the regression equation for the model with type_reordered as the x variable
• Before running the linear model, how do you expect the regression output to change?

Regression equation

ŷi = â + b̂1 × [i’s category == normal] + b̂2 × [i’s category == osteopenia]

Thus, a (the intercept) will be the average for patients with osteoporosis, a + b1 will be the average for
patients with normal bone density (implying the b1 will be the additional calcium intake for patients with
normal bone density) and a + b2 will be the average for patients with osteopenia (implying that b2 will be
the additional calcium intake for patients with osteopenia)

The model

calcium_lm2 <- lm(calcium_intake ~ type_reordered, data = calcium_data)

tidy(calcium_lm2)

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 715. 95.4 7.49 0.00000192
2 type_reorderednormal 223. 135. 1.65 0.119
3 type_reorderedosteopenia 85 135. 0.630 0.538

• Can you interpret the intercept and other coefficients in this model?
• What is the average calcium intake for someone with osteopenia? Is it lower or higher than someone

with normal bone density? By how much?

Another model: Mistaking categorical data for continuous data

• Recall that type_num is a numeric way of storing the categorical data stored in type
str(calcium_data$type_num)

num [1:18] 1 1 1 1 1 1 2 2 2 2 ...

• What happens if we run the regression on type_num?

Another model: Mistaking categorical data for continuous data

Run the regression on type_num:
calcium_lm3 <- lm(calcium_intake ~ type_num, data = calcium_data)

tidy(calcium_lm3)

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

6

1 (Intercept) 1041. 141. 7.36 0.00000160
2 type_num -112. 65.5 -1.71 0.107

• Notice that there is only one coefficient for type_num, but we were expecting two coefficients – one for
the two non-referent levels of type.

• What happened?
• Answer: R interpreted type_num as a continuous, not q categorical, variable. It estimated a regression

slope term using y = a + bx, which is not what we want. This linear model makes the assumption that
the increase in calcium intake going from category 1 to 2 and from 2 to 3 is the same. Thus, this model
is not what we wanted to fit, and does not reflect the underlying data.

• Lesson: make sure that you double check how your categorical variables are coded! They should be
stored as factors or else R will treat them as continuous variables.

Changing a variable type from continuous to categorical

• If your factor variable was coded numerically (like type_num in this example), R will code it as a
continuous number and run simple linear regression on the underlying numbers. This is wrong, but can
happen by mistake if you don’t check.

• In this case you need to change the storage type using your_data %>% mutate(var_categorical =
as.factor(var_numeric, levels = c(<<YOUR LEVELS>>), labels = c(<<YOUR LABELS>>)))

• In the code below, we update the storage type for type_num and store as a new categorical variable
called type_cat_ii:

calcium_data <- calcium_data %>%
mutate(type_cat_ii = factor(type_num, levels = c(1, 2, 3),

labels = c("normal", "osteopenia", "osteoporosis")))

str(calcium_data)

'data.frame': 18 obs. of 5 variables:
$ calcium_intake: num 1200 1000 980 900 750 800 1000 1100 700 800 ...
$ type : Factor w/ 3 levels "normal","osteopenia",..: 1 1 1 1 1 1 2 2 2 2 ...
$ type_num : num 1 1 1 1 1 1 2 2 2 2 ...
$ type_reordered: Factor w/ 3 levels "osteoporosis",..: 2 2 2 2 2 2 3 3 3 3 ...
$ type_cat_ii : Factor w/ 3 levels "normal","osteopenia",..: 1 1 1 1 1 1 2 2 2 2 ...

Re-run the model on type_cat_ii:
calcium_lm4 <- lm(calcium_intake ~ type_cat_ii, data = calcium_data)

tidy(calcium_lm4)

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 938. 95.4 9.83 0.0000000625
2 type_cat_iiosteopenia -138. 135. -1.02 0.322
3 type_cat_iiosteoporosis -223. 135. -1.65 0.119

• This looks better (we have two coefficients).

Recap

• We now know how to write linear models when y is continuous and x is either continuous or categorical
• When x is categorical we expect k − 1 regression coefficients, where k is the number. The regression

coefficients correspond to the average value of y for each category.
• When we have categorical data, it is important to make sure R knows it is categorical (by checking its

str()) and setting the appropriate referent group.

7

• Hypothesis tests as how much each group differs from the referent group.

Future stats classes. . .

• We’ve only dealt with one x variable at a time. In future stat courses, you will learn how to model
multiple x variables using multiple linear regression.

• This is important for prediction models (to get the best prediction you include every x variable that
helps predict y)

• This is also important for causal models (for these models, you are interested in the causal effect of a
specific x variable, but include other x variables to control for bias, such as confounding variables, and
model interactions).

8

	Learning objectives for today
	Example
	The data
	Refresher on lm()
	Running linear regression using a categorical explanatory variable
	Making type a factor variable
	Defining a new referent group
	Linear regression when x is categorical
	Linear regression when x is categorical
	Running lm() on categorical x data
	Running lm() on categorical x data
	Tests and p-values based on the linear model
	predict function to get 95% confidence intervals
	Plot the observed data, the predicted means and their 95% CIs
	Run the model again using the type_reordered as the exposure variable
	Regression equation
	The model
	Another model: Mistaking categorical data for continuous data
	Another model: Mistaking categorical data for continuous data
	Changing a variable type from continuous to categorical
	Recap
	Future stats classes…

