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Recap

• When we have two groups, and for each group we know each individual’s measure for some continuous
variable, we can compare the groups means using a two-sample t-test

• The null hypothesis is that the means are the same (µ1 = µ2)
• What do we do if we have more than three groups that we’d like to compare on some continuous

measure?

Learning objective for today

• Learn how to conduct a hypothesis test to evaluate whether there is a difference across multiple means.
This test is known as the analysis of variance, or ANOVA

• Conduct this test using the aov() function in R.
• After conducting the test, learn how to detect specifically which means are different from one another

using Tukey’s HSD test in R.

A) Is there a difference between these means?

Describe why or why not you think so.
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B) Is there a difference between these means?

Describe why or why not you think so.
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C) Is there a difference between these means?

Describe why or why not you think so.
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D) Is there a difference between these means?

Describe why or why not you think so.
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Summary of the plots

Plot (A)

• The means (red dots) are not very different across the groups. This means the variation between the
group means is small.

• The distribution of the data (black Xs) is wide enough that the distribution of points for each group
overlap almost completely. This means that the variation within each group is relatively wide

Summary of the plots

Plot (B)

• The means are quite different across the groups. The variation between the group means is larger
than in plot (A)

• The distribution of the data overlaps between groups 1 and 2 and 2 and 3, but not 1 and 3. The
variation within each group is as wide as it was in Plot (A) but doesn’t mask the mean differences,
especially between group 1 and 2

Summary of the plots

Plot (C)

• Here, the means for group 1 and 3 look similar, but the mean for group 2 appears a bit higher than the
other two, though there is still overlap between the data from all the groups

• Is there evidence that at least one of the means is different?

Summary of the plots

Plot (D)
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• Plot (D) looks like Plot (B) but with more variation within groups
• This variation makes the difference between the means harder to detect

Overall summary

• What we informally did on the previous slides was compare the variation between group means to the
variation within the groups

• This focus on variation is why this test is called ANOVA: an ANalysis Of VAriance
• When the ratio of between vs. within variation is large enough then we detect a difference between

the groups
• When the ratio isn’t large enough we can’t detect the difference.
• This ratio is our test statistic, denoted by F

Applet

Try out this Applet.

• Try increasing the SD (this is the SD within each group)
• Try decreasing the sample size
• Try moving the means around (to increase or decrease the SD between groups)

After each change, notice how the F statistic changes. A higher F implies that there is much more variation
between vs. within the groups. Notice also how the p-value for the test changes.

Test your understanding

The Analysis of Variance (ANOVA)

• ANOVA is used to compare the means of more than two groups when the comparison variable is
continuous.

• ANOVA asks, “are the means different from each other?”, Or, “are one or more of the means different
from the others?”

Data

What would the data look like in a data frame?

Data

What would the data look like in a data frame?

• One “grouping” explanatory variable (categorical)
• One continuous response variable

ANOVA asks if there is an association between the grouping variable and the response variable.

What test asks if there is an association between two categorical variables?

Descriptive plots

How would you want to plot these data before you conduct a test?

Descriptive plots

How would you want to plot these data before you conduct a test?

• Option 1: Box plot for each level of the grouping variable (with overlaid data points)
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ggplot(diff_3_narrow, aes(x = Group, y = Measure)) +
geom_boxplot() +

geom_point() +
theme_minimal(base_size = 15)
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Descriptive plots

How would you want to plot these data before you conduct a test?

• Option 2: Density plot for each level of the grouping variable
ggplot(diff_3_narrow, aes(x = Measure)) +

geom_density(aes(fill = Group), alpha = 0.5) +
theme_minimal(base_size = 15)
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Descriptive plots

How would you want to plot these data before you conduct a test?

• Option 3: Histogram for each level of the grouping variable
ggplot(diff_3_narrow, aes(x = Measure)) +

geom_histogram(aes(fill = Group), col = "white", binwidth = 2.5) +
theme_minimal(base_size = 15) + facet_wrap(~ Group, nrow = 3)
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The hypotheses

Null hypothesis

H0 : µ1 = µ2 = ... = µK , where K is the number of levels of the grouping variable

• Can you also state the null hypothesis in words?

Alternative hypothesis

Ha : not all µ1, µ2,. . . , µK are equal

• In words: Not all means are the same. Or, at least one of the means differs from the others.

Example: Cannabis to treat brain cancer in mice

High-grade glioma is an aggressive type of brain cancer with a low long-term survival rate. Cannabinoids,
chemical compounds found in cannabis, are thought to inhibit glioma cell growth. Researchers transplanted
glioma cells into otherwise-healthy mice, and then randomly assigned these mice to 4 cancer treatments:
irradiation alone, cannabinoids alone, irradiation combined with cannabinoids, or no treatment. The
treatments were administered for 21 days, after which the glioma tumor volume (in cubic millimeters) was
assessed in each mouse using brain imaging.

The data

treatment <- c(rep("Irradiation", 4), rep("Cannabinoids", 5), rep("Both", 6),
rep("Neither", 7))

tumor_volume <- c(30, 46, 46, 95, # Irradiation
12, 14, 16, 41, 47, # Cannabinoids
5, 4, 4, 4, 10, 9, # Both
24, 30, 43, 51, 62, 32, 96) # Neither

cancer_data <- data.frame(treatment, tumor_volume)

head(cancer_data, 15)

## treatment tumor_volume
## 1 Irradiation 30
## 2 Irradiation 46
## 3 Irradiation 46
## 4 Irradiation 95
## 5 Cannabinoids 12
## 6 Cannabinoids 14
## 7 Cannabinoids 16
## 8 Cannabinoids 41
## 9 Cannabinoids 47
## 10 Both 5
## 11 Both 4
## 12 Both 4
## 13 Both 4
## 14 Both 10
## 15 Both 9

Graph the data

• Think about how you want the data to look.
• I want to plot the raw data points and display the mean for each treatment group
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• I also want to specify the order that the treatment groups show up in the graph
# specify the order of the treatment groups for plotting
library(forcats)
cancer_data <- cancer_data %>%

mutate(trt_order = fct_relevel(treatment, c("Neither", "Irradiation",
"Cannabinoids", "Both")))

# calculate the means and SD for each group
summary_stats <- cancer_data %>%

group_by(trt_order) %>%
summarise(mean_vol = mean(tumor_volume),

sd_vol = sd(tumor_volume),
samp_size = n())

summary_stats

## # A tibble: 4 x 4
## trt_order mean_vol sd_vol samp_size
## <fct> <dbl> <dbl> <int>
## 1 Neither 48.3 24.8 7
## 2 Irradiation 54.2 28.2 4
## 3 Cannabinoids 26 16.6 5
## 4 Both 6 2.76 6

Graph the data

ggplot(cancer_data, aes(x = trt_order, y = tumor_volume)) +
geom_jitter(pch = 4, width = 0.1) + # use geom_jitter() to prevent overplotting
geom_point(data = summary_stats, aes(y = mean_vol, col = "Mean"), pch = 19) +
labs(y = "Tumor volume (mm cubed)", x = "Treatment") +
theme_minimal(base_size = 15)
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# geom_jitter() with width = 0.1 randomly "jitters" the location of the points
# along the x axis so that we can see each of them since some have the exact
# same values.

The test statistic (a.k.a. the ANOVA F Statistic)

F = variation among group means
variation among individuals in the same group

• Numerator is, fundamentally, the variance of the sample means
• Denominator is, fundamentally, an average of the group variances
• The F statistic follows an F distribution

The test statistic (a.k.a. the ANOVA F Statistic)

F = variation among group means
variation among individuals in the same group

F = mean squares for groups
mean squares for error = MSG

MSE

Numerator: Mean squares for groups (MSG)

• Let x̄ represent the overall sample mean (across all the groups)

• The MSG is like an average of the k squared deviations, where groups with high samples are upweighted.

MSG = n1(x̄1−x̄)2+n2(x̄2−x̄)2+....+nk(x̄k−x̄)2

k−1

• Each (x̄i − x̄)2 takes a squared difference between group i’s mean and the overall mean. Thus, the
larger the MSG, the further away the group means are from the overall mean, and the further away
they are from each other in a global sense.

The numerator of the MSG is also called the sum of squares for groups:

MSG = sum of squares for groups
k−1

Denominator: Mean squares for error (MSE)

• Let the variance for each group be represented by s2
i . The variance is our best measure of variation

among individuals in the same group.

• The MSE is like a weighted average of the variation among individuals with the same group:

MSE = (n1−1)s2
1+(n2−1)s2

2+...+(nk−1)s2
k

NT otal−k

• A higher MSE means there is more variation among individuals within groups.
• The numerator of the MSE is also called the sum of squares of error:

MSE = sum of squares of error
NT otal−k

The test statistic (a.k.a. the ANOVA F Statistic)

F = variation among group means
variation among individuals in the same group

F = MSG
MSE

• We are comparing the variation across the groups to the variation among individuals in the same group
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• If the F statistic is high, then there is relatively more variation across groups than there is within
groups.

• If the F statistic is less than 1, then there is more variation across individuals in the same group, then
there is between group means.

• Go back to the applet and move things around. See how the F-statistic changes. When is the F-stat
very high vs. when is it <1?

The F distribution

• Skewed right
• Take only positive values
• The F distribution depends on the number of means being compared and the sample size for each of

the groups
• Let k be the number of groups being compared and NT otal = n1 + n2 + ...+ nk (the total sample size

across all the groups)
• Then the F statistic follows an F distribution with k − 1 degrees of freedom in the numerator and
NT otal − k degrees of freedom in the denominator

• The p-value of the ANOVA F statistic is always the area to the right of the test statistic

ANOVA in R: use aov(), then tidy() it up!

• aov() stands for analysis of variance
#reference: https://broom.tidyverse.org/reference/anova_tidiers.html
library(broom)
cancer_anova <- aov(formula = tumor_volume ~ treatment, data = cancer_data)
tidy(cancer_anova)

## # A tibble: 2 x 6
## term df sumsq meansq statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 treatment 3 8060. 2687. 6.70 0.00313
## 2 Residuals 18 7218. 401. NA NA

• df displays the numerator and denominator degrees of freedom for this dataset
• sumsq displays the sum of squares for groups and sum of squares for error, and meansq displays

the MSG and MSE, respectively.
• You can calculate the meansq column by taking sumsq/df.
• statistic is the F test statistic, the ratio of the MSG and MSE. This F says that the variation

between the means is nearly 7 times as large as the variation within the groups.
• p.value is the p-value for the test. This p-value is equal to 0.3%. There is a 0.3% chance of observing

the F statistic we observed (or more extreme) under the null hypothesis that all the means are the
same. This chance is very low so we reject the null hypothesis in favor of the alternative hypothesis
that at least one of the means differs from the others.

ANOVA in R: use aov(), then tidy() it up!

tidy(cancer_anova)

## # A tibble: 2 x 6
## term df sumsq meansq statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 treatment 3 8060. 2687. 6.70 0.00313
## 2 Residuals 18 7218. 401. NA NA
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You can check that you can calculate the p-value from the F distribution. Remember, that you need to
specify a degrees of freedom for the numerator and for the denominator:
pf(6.699489, df1 = 4 - 1, df2 = 22 - 4, lower.tail = F)

## [1] 0.003131703

The p-value equals 0.3%. Under the null hypothesis of no difference between the group means, there is a
0.3% chance of observing the F-statistic that we calculated or a more extreme one. This is a very small
probability, and provides evidence against the null in favor of the alternative hypothesis that at least one
mean is different from the others.

Check your understanding

Next steps

• The interpretation of the p-value leaves something to be desired: What group or groups is different
from the others?

• You could look at all pairwise differences (i.e., comparing each combination of two treatments to each
other using two-sample test), but we have to be careful because we will find differences “just by chance”
if we compare enough groups.

Tukey’s honestly significant differences (Tukey’s HSD)

• Tukey’s test maintains a 5% experimentwise or “family” error rate.
• Even if you make every pairwise comparison, the overall error rate is fixed at 5% (at most)
• Using Tukey’s HSD overcomes the issue of multiple testing. Recall: If you conducted 100 tests with a

5% error rate (i.e., α = 0.05) AND the H0 was always true, how many p-values would you expect to be
< 0.05?

• The Tukey’s error rate is 5% overall, no matter how many tests you do. Thus it overcomes the problem
of multiple testing

TukeyHSD() to calculate the differences in R

Here is the R code and output:
diffs <- TukeyHSD(cancer_anova, conf.level = 0.95) %>% tidy()
diffs

## # A tibble: 6 x 7
## term contrast null.value estimate conf.low conf.high adj.p.value
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 treatme~ Cannabinoids-Both 0 20 -14.3 54.3 0.378
## 2 treatme~ Irradiation-Both 0 48.3 11.7 84.8 0.00756
## 3 treatme~ Neither-Both 0 42.3 10.8 73.8 0.00661
## 4 treatme~ Irradiation-Canna~ 0 28.2 -9.72 66.2 0.190
## 5 treatme~ Neither-Cannabino~ 0 22.3 -10.9 55.4 0.263
## 6 treatme~ Neither-Irradiati~ 0 -5.96 -41.4 29.5 0.964

Each row in the table corresponds to a pairwise test. So the first row is looking at the difference between
Cannabinoids vs. Both treatments. The estimated difference in means is 20 and the 95% CI is 13.54 to 26.45.
The adjusted p-value is 0.38.

• “Adjusted” means that it is adjusted for conducting multiple tests. The unadjusted p-value would be
smaller. You can tell the unadjusted p-value would be < 0.05 because the 95% CI doesn’t include 0.

• Thus, when you have an adjusted test you can’t use the CI to infer the value of the
p-value!
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Visualize the pairwise differences

ggplot(diffs, aes(x = contrast, y = estimate)) + geom_point() +
geom_segment(aes(y = conf.low, yend = conf.high, xend = contrast)) +
theme_minimal(base_size = 15) +
geom_hline(aes(yintercept = 0), lty =2) +
geom_text(aes(label = paste0("p-value:\n ", round(adj.p.value, 2))), nudge_x = 0.3) +
labs(y = "Estimated difference", x = "") +
scale_x_discrete(labels = c("Cannabinoids\n vs. both", "Irradiation\n vs. both",

"Irradiation vs.\ncannabinoids", "Neither\n vs. both",
"Neither vs.\n Cannabinoids", "Neither vs.\n Irradiation"))
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Using Tukey’s HSD, we would conclude that the mean for irradiation is different from the mean for both
treatments and the mean for neither treatment is different from the mean for both treatments.

Even though the CIs don’t overlap with the null value, for three of the other comparisons, their adjusted
p-values are > 5% so we cannot say for sure if these

Conditions for ANOVA

Condition 1: k independent SRSs, one from each of k populations.

• The most important assumption, because this method, like the others in Part III of the course, depends
on the premise of having taken a random sample.

Conditions for ANOVA

Condition 2: Each of the k populations has a Normal distribution with an unknown mean µi.

• This assumption is less necessary
• The ANOVA test is robust to non-Normality.
• What matters more is Normality of the sample means (guaranteed as n increases because of the CLT).
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• If the sample size is small (say 4-5 individuals per group) then need data that is roughly symmetric
with no outliers.

Conditions for ANOVA

Condition 3: All the populations have the same standard deviation σ, whose value is unknown.

• Hardest condition to satisfy and check
• If this condition is not satisfied ANOVA is often okay if the sample sizes are large enough and if they

are similar across the groups
• Can use group_by() and summarize() to calculate the sample SDs to see if they’re similar and

indicative that the population parameters are too
• Rule of thumb: want the largest sample standard deviation to be less than twice as largest as the

smallest one. I.e., smax/smin < 2

Good video summarizing running ANOVA in R

https://youtu.be/lpdFr5SZR0Q

• 5 minutes long
• Mike also talks about the Kruskal Wallis test, which Mi-Suk will introduce you in Monday’s recorded

lecture.
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