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Recap

• For the last few lectures we have assumed that the population standard deviation (σ) was known.
• We conducted the z-test and created CIs using this known σ
• Today, we generalize this framework to a setting where σ is unknown and needs to be estimated by s,

the sample standard deviation

Reduced conditions for inference about a mean

• Data is a SRS form a much larger population (really important)
• Observations follow a Normal distribution (some leeway thanks to the CLT)

Estimating the standard error based on the sample

• Previously, we learned that the standard error of the sampling distribution is equal to σ/
√
n and used

this in our calculations
• When we don’t know σ we can use the sample standard deviation, s, instead to estimate the standard

error by

s/
√
n

s vs. s/
√
n

• Remember, s is our estimate for the population standard deviation. It estimates the variation between
individuals.

• In contrast, s/
√
n is our estimate for the standard error of the mean, x̄. s/

√
n estimates how much

sample means vary if we were to take many multiple samples

Recall the z-test!

z = x̄− µ
σ/
√
n
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Meet the t-test!

t = x̄− µ
s/
√
n

• What is the difference between z and t?
• The t-test statistic is more variable than the z-test statistic because we have to estimate σ using s.

Because s is a statistic, it varies across samples (whereas σ is a population parameter, which implies it
is a constant).

• This substitution makes the t-test not follow a Normal(0, 1) distribution. Its distribution is more
variable than the standard Normal. Thus, we need a distribution that is like the standard Normal but
a little bit wider (i.e., more area in the tails of the distribution).

Introducing the t distribution

• The t-distribution is like the standard Normal distribution, but wider.
• Its width depends on n, the sample size. This is because as n increases, our estimate s gets better and

better, and approaches σ. Thus, as n increases the t-distribution approaches a Normal(0, 1) distribution.
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Comparing N(0,1) to t−distributions

Meet the t-test!

t = x̄− µ0

s/
√
n

The one-sample t statistic has a t distribution with n− 1 degrees of freedom (df)

What are degrees of freedom?: For this test, the degrees of freedom is equal to n− 1. The higher the
degrees of freedom, the closer the shape of the t-distribution is to the Normal distribution.

Meet the t-test!

Steps to conduct a t-test:

1. Determine whether the assumptions to conduct the t-test are met.
2. Calculate the t-test statistic using x̄ and s (estimated from your sample), n which is also a property of

your sample, and µ0 from the null hypothesis.
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t = x̄− µ0

s/
√
n

3. Compute the probability of observing this test statistic t or more extreme under the null hypothesis.
This is the p-value. We use this using the R function pt(q=t, df=n-1)

4. Interpret the p-value. Is the probability very small (and shows evidence against the null distribution in
favor of the alternative)? Sometimes, you will be ask to compare the p-value to a pre-defined significance
level, α, where α = 0.05 most commonly (but we talked about why we don’t always do this!)

Guess the R functions

pt(q = , df = , lower.tail = )
qt(p = , df = , lower.tail = )

Which one would we use to calculate the p-value for a hypothesis test after we calculated the t-test statistic?
pt or qt?

Suppose you calculated t = -2 and you know that the sample size was 100. Write the code to calculate the
p-value for a two-sided test:
#to fill out in class

Calculating a confidence interval for the t-test

Draw an SRS of size n from a large population having unknown mean µ and unknown standard deviation σ.
A level C confidence interval for µ is:

x̄± t∗ s√
n

where t∗ is the critical value for the t(df = n− 1) density curve with area C between −t∗ and t∗.

Supposing we had n = 100, what is t∗ for a 95% confidence interval?

Answer to previous question

qt(p = 0.975, df = 99)

## [1] 1.984217

Example: Testosterone and obesity in adolescent males (pg 422 B&M Ed 4)

Here are the data for n = 25 adolescent males between the ages of 14 and 20:
library(tidyverse)
testosterone <- c(0.30, 0.24, 0.19, 0.17, 0.18, 0.23, 0.24, 0.06, 0.15,

0.17, 0.18, 0.17, 0.15, 0.12, 0.25, 0.25, 0.25, 0.32,
0.35, 0.37, 0.39, 0.46, 0.49, 0.42, 0.36)

dat_test <- data.frame(testosterone)

ggplot(dat_test, aes(x = testosterone)) + geom_histogram(binwidth = 0.05, col = "white")
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Example: Testosterone and obesity in adolescent males (pg 422 B&M Ed 4)

Use R to calculate a 95% confidence interval for testosterone. We can do this using summarize

dat_test %>% summarize(sample_mean = mean(testosterone), #sample mean
sample_sd = sd(testosterone), #sample standard dev
sample_size = length(testosterone), #sample size n
sample_se = sample_sd/sqrt(sample_size)) #standard error of mean

## sample_mean sample_sd sample_size sample_se
## 1 0.2584 0.1115303 25 0.02230605

We still need the t∗ value:
t_star <- qt(p = 0.975, df = 24)
t_star

## [1] 2.063899

Example: Testosterone and obesity in adolescent males (pg 422 B&M Ed 4)

Expand the previous code chunk to calculate the margin of error (which uses the critical t∗ value), and then
calculate the lower and upper CI
dat_test %>% summarize(sample_mean = mean(testosterone),

sample_sd = sd(testosterone),
sample_size = length(testosterone),
sample_se = sample_sd/sqrt(sample_size),
margin_of_error = sample_se*t_star,
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lower_CI = sample_mean - margin_of_error,
upper_CI = sample_mean + margin_of_error)

## sample_mean sample_sd sample_size sample_se margin_of_error lower_CI
## 1 0.2584 0.1115303 25 0.02230605 0.04603743 0.2123626
## upper_CI
## 1 0.3044374

Interpret: The sample mean x̄ is 0.26 and its 95% confidence interval is 0.21 to 0.30. Using this method, 95%
of the confidence intervals we make will contain the true population mean µ.

The t-test

Draw an SRS of size n from a large population having unknown mean µ and unknown standard deviation σ.
To test the hypothesis H0 : µ = µ0, calculate the t statistic:

t = x̄− µ0

s/
√
n

t comes from the t-distribution with n− 1 degrees of freedom. For the t we calculate from our sample, the
next step is to calculate the probability that we would see this t (or a more extreme value) under the null
distribution.

Ha: µ > µ0 is P (T ≥ t), using code: pt(q = t, df = n-1, lower.tail = F)
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Ha: µ < µ0 is P (T ≤ t), using code: pt(q = t, df = n-1)
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Ha: µ 6= µ0 is 2× P (T ≥ |t|), using code: pt(q = t, df = n-1)*2 if your t is negative, or pt(q = t, df
= n-1, lower.tail = F) * 2 if your t is positive.
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Example of a t-test (pg 426 B&M Ed 4)

Here are 18 measures of pulse wave velocity (PWV) from a sample of children diagnosed with progeria, a
genetic disorder that produces rapid aging.
pwv <- c(18.8, 17.6, 17.5, 16.0, 14.8, 14.1, 13.7, 13.1, 12.9,

12.9, 12.4, 10.1, 9.3, 9.1, 8.3, 8.3, 7.9, 7.2)

pwv_dat <- data.frame(pwv)

For the general population, pwv measures greater than 6.6 are considered abnormally high. We would like to
test the hypothesis that the mean for this subset of children is abnormally high.

That is: H0 : µ = 6.6 and Ha : µ > 6.6

Look at the data and see if there is evidence against the null hypothesis
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Calculations using R code

pwv_dat %>%
summarize(sample_mean = mean(pwv),

sample_sd = sd(pwv),
sample_size = length(pwv),
sample_se = sample_sd/sqrt(sample_size),
t_test = (sample_mean - 6.6)/sample_se,
p_value = 1 - pt(t_test, df = sample_size - 1))

## sample_mean sample_sd sample_size sample_se t_test p_value
## 1 12.44444 3.637747 18 0.8574252 6.816273 1.501248e-06

• Know also how to do these calculations by hand. For example, you could be provided with x̄ and s for
this sample and asked to compute the test statistic

• You cannot compute the p-value by hand, but should know the code required to calculate the p-value
and how to interpret it.

There’s a function for that. . .

Rather than doing the test using summarize, we could have R do it for us using t.test:
t.test(x = pwv_dat %>% pull(pwv), alternative = "greater", mu = 6.6)

##
## One Sample t-test
##
## data: pwv_dat %>% pull(pwv)
## t = 6.8163, df = 17, p-value = 1.501e-06
## alternative hypothesis: true mean is greater than 6.6
## 95 percent confidence interval:
## 10.95286 Inf
## sample estimates:
## mean of x
## 12.44444

Matched pairs t procedures

• skip this section for now. We will come back to this next week.

Robustness of t procedures

• A confidence interval or hypothesis test is called robust if the confidence level or p-value does not
change very much when the conditions for use of the procedure are violated.

• In particular, how robust are the procedures against non-Normality?

• The t procedures are quite robust against non-Normality of the population except when outliers or
strong skewness are present.

• The t procedures are not robust against outliers unless the sample size is sufficiently large.

Checking assumptions

• Always plot your data first:
– Are there any outliers
– Is the distribution of the data skewed?
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Guidelines for using the t procedures

• The SRS condition is more important that the Normality condition
• If n < 15: Use t procedures if the data appear close to Normal (at least roughly symmetric, single peak,

no outliers). If the data are skewed or there are outliers, don’t use t.
• Moderate sample size > 15: The t procedures can be used except in the presence of outliers or strong

skewness
• Large sample size, roughly n ≥ 40: The t procedures can be used even for strongly skewed distributions

when the sample is large, roughly n ≥ 40

Example 17.5: Can we use t?

• Good text example. Here you are provided with four datasets and their distributions and sample sizes
and are asked whether it is appropriate to use a t-test.

• Pg. 436 of edition 4.

Recap

• We use a z-test when the population sd σ is known
• We use a t-test when the population sd has to be estimated by s
• We compare the z test statistic to a N(0,1) distribution to calculate the p-value
• We compare the t test statistics t a t distribution with degrees of freedom on n-1
• When n is large, the t distribution is very close to the N(0,1) distribution. This means that we have

some intuition about whether the p-value is going to be small or large when the sample large is big.
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