Tree diagrams, absolute frequencies, and diagnostic testing

Corinne Riddell

September 27, 2021

Today's agenda

- Use absolute frequencies to calculate probabilities
- Use tree diagrams to calculate probabilities
- Apply these skills to diagnostic testing
 - Sensitivity, specificity, positive predictive value, negative predictive value, true positives, false positives, true negatives, and false negatives
- Learn Bayes' theorem

Unintended pregnancies

- Approximately 9% of all births in the US are to teen mothers (aged 15-19), 24% to younger adult mothers (ages 20-24) and the remaining 67% to older adult mothers (aged 25-44).
- A survey found that only 23% of births to teen mothers are intended. Among births to younger adult women, 50% are intended, and among older adult women 75% are intended

Define events using probability notation

Express all the percents on the previous slide using probability notation.

- Let M denote the age of the mother and B denote whether the birth was intended. Then we can define the events on the previous slides as:
 - P(M = teen) = 0.09
 - P(M = young adult) = 0.24
 - P(M = older adult) = 0.67
 - P(B = intended | M = teen) = 0.23
 - P(B = intended | M = young adult) = 0.5
 - P(B = intended | M = older adult) = 0.75

Question to answer

- What is the probability that any given live birth in the U.S. is unintended?
 - Rewrite this question as a probability statement
- We will review two ways to answer this question:
 - a) Using absolute frequencies (not covered in the book)
 - b) Using tree diagrams

Method a: Absolute Frequencies

- Pretend there are 1000 women. Given that 9%, 24%, and 67% of the mothers are teens, younger, and older mothers (respectively) this means that out of the 1000:
 - 90 are teens
 - 240 are younger mothers
 - 670 are older mothers

Method a: Absolute Frequencies

- Now, <u>conditional</u> on being a teen, 23% of the pregnancies are intended.
- This means that 90x23% = 20.7 teen mothers had intended pregnancies.
- We can calculate these joint probabilities for each age group:
 - 90 are teens, 90x23% = 20.7 teens with intended pregnancies (and 69.3 teens with unintended pregnancies).
 - 240 are younger mothers, 240 x50% = 120 younger mothers with intended pregnancies (and 120 younger mothers with unintended pregnancies).
 - 670 are older mothers, 670x75% = 502.5 older mothers with intended pregnancies (and 167.5 with unintended pregnancies).

Method a: Absolute Frequencies

- Then, we can add on the number of unintended pregnancies across all the mothers:
 - 69.3 + 120 + 167.5 = 356.8
- The last step is to convert this back to a probability.
- To do that, remember that there were 1000 women in the population. So 356.8/1000 = 35.7%
- Conclusion: The chance that a live birth in the US is unintended is 35.7%.

Method b: Tree diagram

- Rather than using absolute frequencies, you might prefer to draw this information using a tree diagram
- These diagrams are helpful when you know information about conditional probabilities and when the events of interest have more than two states (which is when Venn diagrams are used)

P(M and B) Event B P(B|M)Event M 0.0207 intended 0.23 teen P(M) unintended 0.0693 0.77 0.09 0.12 0.50 intended 0.24 younger adult 0.12 unintended 0.50 0.67 intended 0.5025 0.75 older _ adult unintended 0.1675 0.25

Method b: Tree diagram

Method b: Tree diagram

P(B=unintended) = 0.0693 + 0.12 + 0.1675 = 35.7%

Diagnostic Testing

Recall the question I asked a few days ago...

- Suppose that there is test for a specific type of cancer that has a 90% chance of testing positive for cancer if the individual truly has cancer and a 90% chance of testing negative for cancer when the individual does not have it.
- 1% of patients in the population have the cancer being tested for.
- What is the chance that a patient has cancer given that they test positive?
 - a) Between 0% 24.9%
 - b) Between 25.0% 49.9%
 - c) Between 50.0% 74.9%
 - d) Between 75.0% 100%

Rewrite this information using prob. notation

- Let C be the true cancer status. C = cancer for individuals who truly have cancer and C = no cancer for individuals who truly do not have cancer.
- Let T be the test result. T = positive for individuals who test positively for cancer and T = negative for individuals who test negative for cancer. Then:
 - P(C=cancer)=0.01
 - P(Test = positive | C=cancer) = 0.90
 - P(Test = negative | C=no cancer) = 0.90
- The question is "What is the chance that a patient has cancer given that they test positive". Rewrite the question using this probability notation.

Diagnostic testing definitions

- Sensitivity: The test's ability to appropriately give a positive result when a person tested has the disease, or P(T = positive | C=cancer)
- Specificity: The test's ability to appropriately give a negative result when a person tested does not have the disease, or
 P(T = negative | C= no cancer)

Diagnostic testing definitions

- **Positive predictive value**: The chance that a person truly has cancer, given that the test is positive, or **P(C=cancer|T=positive)**
- Negative predictive value: The chance that a person truly does not have cancer, given that the test is negative, or P(C=no cancer|T=negative)

Back to the question

- Going back to the question... The question provided us information on the test's sensitivity and specificity as well as the prevalence of cancer in the underlying population
- The question asks us for the test's **positive predictive value**.
- We can use absolute frequencies or a tree diagram to answer the question.

Absolute frequency approach

- Suppose that there are 1000 women in the population
- Translate the probabilities provided into absolute frequencies:
 - 1% truly have cancer \rightarrow 10 women truly have cancer, 990 women do not.
 - 90% sensitivity → Among the 10 who truly have cancer, 9 women will test positive and 1 will test negative.
 - 90% specificity → Among the 990 who do not have cancer, 891 will test negative, and 99 will test positive.
 - So, we have 9 + 99 = 108 women detected with cancer
 - Of these 108 women, only 9 truly have cancer. Thus, 9/108 = 8.3% of those detected for cancer actually have it.

Method b: Tree diagram

P(C=cancer|T=positive) = P(cancer & test positive)/P(test positive)

- = P(cancer & test positive)/[P(test positive & cancer) + P(test positive & no cancer)]
- = P(true positive)/[P(true positive) + P(false positive)]

= 0.009/(0.009 + 0.099) = 8.3%

- To answer this question, we started with information on P(T|C) and P(C) and used it to calculate P(C|T).
- We can generalize how we did this using a rule known as Bayes' Theorem.
- To begin, recall the formula for conditional probability from last class:

$$P(A|B) = \frac{P(A\&B)}{P(B)}$$

• To begin, recall the formula for conditional probability from last class:

$$P(A|B) = \frac{P(A\&B)}{P(B)}$$
[Formula 1]

• This formula also implies:

$$P(B|A) = \frac{P(A\&B)}{P(A)}$$

which can be rearranged as: $P(B|A) \times P(A) = P(A\&B)$ [Formula 2]

• Plug Formula 2 into Formula 1:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$
[Formula 3]

- If A only has two states, either A occurs or it does not (A' occurs), then P(B) can be partitioned into two pieces: P(B) = P(B&A) + P(B&A') = P(B|A)P(A) + P(B|A')P(A')
- Then we can plug in this result into Formula 3: $P(A|B) = \frac{P(B|A) \times P(A)}{P(B|A)P(A) + P(B|A')P(A')}$

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B|A)P(A) + P(B|A')P(A')}$$

- This is Bayes' Theorem
- It allows to calculate a conditional probability (here, P(A|B)), when we only have information on the reverse condition (P(B|A)), as well as information on the overall probability of A (P(A))
- This is how we calculated the positive predictive value, P(C=cancer|T=+), when we only knew the Sensitivity (P(T=+|C=cancer)), Specificity (P(T=-|C=no cancer)), and Prevalence of cancer (P(C=cancer))

Bayes' Theorem, Generalized

- Rather than only having A and A', suppose that A could take the values 1, 2, 3, and so on through A=k, where each of these states are disjoint and there probabilities are non-zero and add to 1.
- Then for B whose probability is not 0 or 1,

 $P(A_i|B) = \frac{P(B|A_i) \times P(A_i)}{P(B|A_1) \times P(A_1) + P(B|A_2) \times P(A_2) + \dots + P(B|A_k) \times P(A_k)}$

- Don't worry too much about understanding this formula
- Rather, focus on practicing the calculations for diagnostic testing like the one shown on the previous slide.
- You can watch <u>this video (6 mins</u>) to see how Bayes' Theorem is using in Al today.

Recap

- Absolute frequencies or tree diagrams
 - Use the method you like best to solve for probabilities
 - Or, use a Venn diagram. Apply the method that makes the most sense to you and suits the question.
- Diagnostic testing
 - Key lesson: Just because sensitivity and specificity are high, this does not imply that the positive predictive value is also high. In lab, you will explore why this is the case
- Bayes' Theorem
 - We used it without event knowing it!
 - Don't worry about the formula, just know how to solve for probabilities using the method that you understand best.