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Today’s agenda

• Use absolute frequencies to calculate probabilities
• Use tree diagrams to calculate probabilities
• Apply these skills to diagnostic testing

• Sensitivity, specificity, positive predictive value, negative predictive value, true 
positives, false positives, true negatives, and false negatives

• Learn Bayes’ theorem



Unintended pregnancies

• Approximately 9% of all births in the US are to teen mothers (aged 
15-19), 24% to younger adult mothers (ages 20-24) and the remaining 
67% to older adult mothers (aged 25-44). 
• A survey found that only 23% of births to teen mothers are intended. 

Among births to younger adult women, 50% are intended, and among 
older adult women 75% are intended



Define events using probability notation

Express all the percents on the previous slide using probability 
notation.
• Let M denote the age of the mother and B denote whether the birth 

was intended. Then we can define the events on the previous slides 
as:
• P(M = teen) = 0.09
• P(M = young adult) = 0.24
• P(M = older adult) = 0.67
• P(B = intended|M = teen) = 0.23
• P(B = intended|M = young adult) = 0.5
• P(B = intended|M = older adult) = 0.75 



Question to answer

• What is the probability that any given live birth in the U.S. is 
unintended?
• Rewrite this question as a probability statement

• We will review two ways to answer this question:
a) Using absolute frequencies (not covered in the book)
b) Using tree diagrams



Method a: Absolute Frequencies

• Pretend there are 1000 women. Given that 9%, 24%, and 67% of the 
mothers are teens, younger, and older mothers (respectively) this 
means that out of the 1000:
• 90 are teens
• 240 are younger mothers
• 670 are older mothers



Method a: Absolute Frequencies

• Now, conditional on being a teen, 23% of the pregnancies are 
intended. 
• This means that 90x23% = 20.7 teen mothers had intended 

pregnancies. 
• We can calculate these joint probabilities for each age group:

• 90 are teens, 90x23% = 20.7 teens with intended pregnancies (and 69.3 teens 
with unintended pregnancies).

• 240 are younger mothers, 240 x50% = 120 younger mothers with intended 
pregnancies (and 120 younger mothers with unintended pregnancies).

• 670 are older mothers, 670x75% = 502.5 older mothers with intended 
pregnancies (and 167.5 with unintended pregnancies).



Method a: Absolute Frequencies

• Then, we can add on the number of unintended pregnancies across 
all the mothers: 
• 69.3 + 120 + 167.5 = 356.8

• The last step is to convert this back to a probability. 
• To do that, remember that there were 1000 women in the 

population. So 356.8/1000 = 35.7%
• Conclusion: The chance that a live birth in the US is unintended is 

35.7%.



Method b: Tree diagram

• Rather than using absolute frequencies, you might prefer to draw this 
information using a tree diagram
• These diagrams are helpful when you know information about 

conditional probabilities and when the events of interest have more 
than two states (which is when Venn diagrams are used)



Method b: Tree diagram
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P(B=unintended) = 0.0693 + 0.12 + 0.1675 = 35.7%  



Diagnostic Testing



Recall the question I asked a few days ago…

• Suppose that there is test for a specific type of cancer that has a 90% 
chance  of testing positive for cancer if the individual truly has cancer and a 
90% chance of testing negative for cancer when the individual does not 
have it. 
• 1% of patients in the population have the cancer being tested for. 
• What is the chance that a patient has cancer given that they test positive? 

a) Between 0% - 24.9%
b) Between 25.0% - 49.9%
c) Between 50.0% - 74.9%
d) Between 75.0% - 100%



Rewrite this information using prob. notation

• Let C be the true cancer status. C = cancer for individuals who truly have 
cancer and C = no cancer for individuals who truly do not have cancer.
• Let T be the test result. T = positive for individuals who test positively for 

cancer and T = negative for individuals who test negative for cancer. Then:
• P(C=cancer)=0.01
• P(Test = positive|C=cancer) = 0.90
• P(Test = negative|C=no cancer) = 0.90

• The question is “What is the chance that a patient has cancer given that 
they test positive”. Rewrite the question using this probability notation. 



Diagnostic testing definitions

• Sensitivity: The test’s ability to appropriately give a positive result 
when a person tested has the disease, or P(T = positive|C=cancer)
• Specificity: The test’s ability to appropriately give a negative result 

when a person tested does not have the disease, or                            
P(T = negative|C= no cancer)



Diagnostic testing definitions

• Positive predictive value: The chance that a person truly has cancer, 
given that the test is positive, or P(C=cancer|T=positive)
• Negative predictive value: The chance that a person truly does not 

have cancer, given that the test is negative, or                                  
P(C=no cancer|T=negative)



Back to the question

• Going back to the question… The question provided us information 
on the test’s sensitivity and specificity as well as the prevalence of 
cancer in the underlying population
• The question asks us for the test’s positive predictive value.
• We can use absolute frequencies or a tree diagram to answer the 

question.



Absolute frequency approach

• Suppose that there are 1000 women in the population
• Translate the probabilities provided into absolute frequencies:

• 1% truly have cancer à 10 women truly have cancer, 990 women do not.
• 90% sensitivity à Among the 10 who truly have cancer, 9 women will test 

positive and 1 will test negative.
• 90% specificity à Among the 990 who do not have cancer, 891 will test 

negative, and 99 will test positive.
• So, we have 9 + 99 = 108 women detected with cancer
• Of these 108 women, only 9 truly have cancer. Thus, 9/108 = 8.3% of those 

detected for cancer actually have it.



Method b: Tree diagram
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Event C

cancer

no
cancer

P(C)

0.01

0.99

Event B
P(T|C)

0.90

0.10

0.10

0.90 positive

negative

positive

negative

P(C and T)

0.009

0.099

0.891

0.001

P(C=cancer|T=positive) = P(cancer & test positive)/P(test positive)
= P(cancer & test positive)/[P(test positive & cancer) + P(test positive & no cancer)]
= P(true positive)/[P(true positive) + P(false positive)]
= 0.009/(0.009 + 0.099) = 8.3% 
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Bayes’ Theorem

• To answer this question, we started with information on P(T|C) and 
P(C) and used it to calculate P(C|T). 
• We can generalize how we did this using a rule known as Bayes’ 

Theorem.
• To begin, recall the formula for conditional probability from last class:

𝑃 𝐴 𝐵 =
𝑃(𝐴&𝐵)
𝑃(𝐵)



Bayes’ Theorem

• To begin, recall the formula for conditional probability from last class:

𝑃 𝐴 𝐵 = !(#&%)
!(%)

[Formula 1]

• This formula also implies:

𝑃(𝐵|𝐴) =
𝑃(𝐴&𝐵)
𝑃(𝐴)

which can be rearranged as: 𝑃(𝐵|𝐴)×𝑃 𝐴 = 𝑃 𝐴&𝐵 [Formula 2]



Bayes’ Theorem

• Plug Formula 2 into Formula 1:

𝑃 𝐴 𝐵 = !(%|#)×! #
!(%)

[Formula 3]

• If A only has two states, either A occurs or it does not (A’ occurs), 
then P(B) can be partitioned into two pieces: 
𝑃 𝐵 = 𝑃 𝐵&𝐴 + 𝑃 𝐵&𝐴) = 𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 𝐴′ 𝑃 𝐴′

• Then we can plug in this result into Formula 3:

𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)×𝑃 𝐴

𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 𝐴′ 𝑃 𝐴′



Bayes’ Theorem

𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)×𝑃 𝐴

𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 𝐴′ 𝑃 𝐴′
• This is Bayes’ Theorem
• It allows to calculate a conditional probability (here, P(A|B)), when we 

only have information on the reverse condition (P(B|A)), as well as 
information on the overall probability of A (P(A))
• This is how we calculated the positive predictive value, 

P(C=cancer|T=+), when we only knew the Sensitivity 
(P(T=+|C=cancer)), Specificity (P(T=-|C=no cancer)), and Prevalence 
of cancer (P(C=cancer))



Bayes’ Theorem, Generalized

• Rather than only having A and A', suppose that A could take the values 1, 2, 
3, and so on through A=k, where each of these states are disjoint and there 
probabilities are non-zero and add to 1. 
• Then for B whose probability is not 0 or 1,

• Don’t worry too much about understanding this formula
• Rather, focus on practicing the calculations for diagnostic testing like the 

one shown on the previous slide.
• You can watch this video (6 mins) to see how Bayes’ Theorem is using in AI 

today. 

𝑃 𝐴! 𝐵 =
𝑃(𝐵|𝐴!)×𝑃 𝐴!

𝑃 𝐵 𝐴" ×𝑃 𝐴" + 𝑃 𝐵 𝐴# ×𝑃 𝐴# + …+ 𝑃(𝐵|𝐴$)×𝑃 𝐴$

https://www.youtube.com/watch?v=BcvLAw-JRss


Recap

• Absolute frequencies or tree diagrams
• Use the method you like best to solve for probabilities
• Or, use a Venn diagram. Apply the method that makes the most sense to you 

and suits the question.
• Diagnostic testing

• Key lesson: Just because sensitivity and specificity are high, this does not 
imply that the positive predictive value is also high. In lab, you will explore 
why this is the case

• Bayes’ Theorem
• We used it without event knowing it!
• Don’t worry about the formula, just know how to solve for probabilities using 

the method that you understand best. 


