
Probability Sampling

Corinne Riddell

September 15, 2021

Learning objectives

• Learn how to take a random sample (a.k.a. a probability sample) in R
• Know the difference between a simple random sample, a proportionate stratified sample, a dispropor-

tionate stratified sample, and a multistage sample
• Know how to take a simple random sample and a proportionate stratified sample in R
• Introduce the idea of probability
• See how an estimate of probability is related to the size of the sample chosen from the underlying

population

Recall from last class

• Last class we discussed non-probability studies (e.g., convenience samples) and how they are not
necessarily representative of an underlying population from which they were sampled.

• To obtain a more representative sample, we can take a probability sample. The most common type
of probability sample is a simple random sample

Simple random sample (SRS)

• Simple random sample (SRS): A sample chosen by chance, where each individual in the data set has
the same chance of being selected.

• We can easily choose a SRS from a data frame in R

Example of SRS in R

• First read in the hospital cesarean data
CS_data <- read_xlsx("./data/kozhimannil.xlsx", sheet = 1)

New names:
* `` -> ...5
CS_data <- CS_data %>% mutate(ID = row_number())
head(CS_data)

A tibble: 6 x 8
Births HOSP_BEDSIZE cesarean_rate lowrisk_cesarean_r~ ...5 `Cesarean rate *1~
<dbl> <dbl> <dbl> <dbl> <lgl> <dbl>
1 767 1 0.344 0.107 NA 34.4
2 183 1 0.454 0.186 NA 45.4
3 668 1 0.430 0.195 NA 43.0
4 154 1 0.279 0.0844 NA 27.9
5 327 1 0.306 0.119 NA 30.6
6 2356 1 0.301 0.0662 NA 30.1
... with 2 more variables: Low Risk Cearean rate*100 <dbl>, ID <int>

1

Example of SRS in R

In the following code chunk, we use slice_sample(n = 100) to take a SRS of 100 individuals (here, hospitals)
from CS_data.
CS_100_1 <- CS_data %>% slice_sample(n=100)

Suppose we took a second sample. . .
CS_100_2 <- CS_data %>% slice_sample(n=100)

Do you expect head(CS_100_1) to equal head(CS_100_2)?

Example of SRS in R

head(CS_100_1 %>% select(Births, HOSP_BEDSIZE, cesarean_rate, ID))

A tibble: 6 x 4
Births HOSP_BEDSIZE cesarean_rate ID
<dbl> <dbl> <dbl> <int>
1 3294 3 0.282 341
2 419 2 0.308 291
3 237 3 0.194 349
4 1943 3 0.227 312
5 550 3 0.271 538
6 2945 3 0.399 560

Example of SRS in R

head(CS_100_2 %>% select(Births, HOSP_BEDSIZE, cesarean_rate, ID))

A tibble: 6 x 4
Births HOSP_BEDSIZE cesarean_rate ID
<dbl> <dbl> <dbl> <int>
1 3598 3 0.360 433
2 3092 3 0.310 569
3 6138 3 0.288 465
4 4843 2 0.388 274
5 6570 3 0.298 476
6 356 1 0.281 113

Example of SRS in R

identical(CS_100_1, CS_100_2)

[1] FALSE

Example of SRS in R

Question: Why are these first six lines different, when the slice_sample(n=100) code is the same? So far
with the functions we’ve learned in class, if we wrote the same line of code, we would generate the same
result. What is going on?

Answer: Anytime you do something randomly in R, the results will be different. This is a good thing! This
allows you to pick many different random samples. In future weeks we will do this a lot.

2

Example of SRS in R

What if you want to ensure that you pick the same SRS as a friend?

Then you need to use set.seed(). Here we set the seed to 123 before running the sampling code. This
ensures that the random samples generated are the same. Try to run this code again with a number other
than 123:
set.seed(123)
CS_100_1 <- CS_data %>% slice_sample(n=100)

set.seed(123)
CS_100_2 <- CS_data %>% slice_sample(n=100)

identical(CS_100_1, CS_100_2)

[1] TRUE

SRS a fraction in R

Another way to take a random sample is to specify the fraction of the dataset that you’d like to include in
your sample using slice_sample(prop = 0.05). Here, we sample 5% of the individuals (here, hospitals):
CS_5percent <- CS_data %>% slice_sample(prop = 0.05)

Proportionate Stratified sampling in R

Suppose you want to take a 10% sample of individuals within each county in California. This is called a pro-
portionate stratified sample. To do this you would use the following code: CA_data %>% group_by(county)
%>% slice_sample(prop = 0.1)

Here is an example using the CS_data:
CS_10percent_grouped <- CS_data %>%

group_by(HOSP_BEDSIZE) %>%
slice_sample(prop = 0.1)

dim(CS_10percent_grouped)

[1] 57 8

In this example, proportionate stratified SRS assembles a sample that maintains the relative proportions of
HOSP_BEDSIZE in the chosen sample compared to the population

Proportionate Stratified sampling in R

How to check you really did sample 10% of each HOSP_BEDSIZE group?

First see how many hospitals fall into each category in the original data
CS_data %>% group_by(HOSP_BEDSIZE) %>% tally()

A tibble: 3 x 2
HOSP_BEDSIZE n
<dbl> <int>
1 1 131
2 2 179
3 3 270

Then in the sample:

3

CS_10percent_grouped%>%group_by(HOSP_BEDSIZE) %>% tally()

A tibble: 3 x 2
HOSP_BEDSIZE n
<dbl> <int>
1 1 13
2 2 17
3 3 27

Disproportionate Stratified sampling in R

• When might you want to over represent certain groups?
• Example: Estimating infant mortality by race/ethnicity when some race/ethnic groups are very small

(e.g., indigenous groups in U.S./Canada)
• Then, you may want to over sample certain groups so you can better estimate infant mortality in those

groups than if you sampled proportionately
• In this case, you could filter your sample into different race/ethnic groups and take samples of different

sizes (or fractions) from each group. You won’t be asked how to do this in R, but rather, know what a
disproportionate stratified sample is and why you might want to take this kind of sample.

Multistage sampling

• Multistage sampling occurs when you first sample a clustering unit and then within the clustering
unit select individuals.

• Examples of clustering units include hospitals, schools, counties, etc.
• For example, sampling schools using a SRS, and then sampling students within those schools.
• Think about the differences between taking a multistage sample of students within schools vs. a SRS

of students across a set of schools. How would these samples look different. Suppose you are taking
measurements from blood tests from the students, which sample is more practical to conduct? Which
one allows you to estimate some quantities for the sampled schools?

Applied example: Using a sample to estimate low birthweight in U.S. territories
Description of the data

These data are births by place of occurrence for U.S. territories (American Samoa, Guam, N. Mariana Islands,
Puerto Rico, and US Virgin Islands) from the year 2015.

This is a subset of the data downloaded from here. You can find more information about the data set here.

Data dictionary

Here is the data dictionary for this dataset:

Variable Description
babyID Unique identifier: row number
dbwt Birth weight in Grams: 227-8165 grams
combgest Combined gestation, in weeks: 17th to 47th week of gestation
sex Assigned sex at birth: M (Male) or F (Female)
dob_mm Birth month
cig_rec If the mother reports smoking in any of the three trimesters of pregnancy she is

classified as a smoker: (Y) Yes, (N) No, or (U) Unknown

4

http://www.nber.org/data/vital-statistics-natality-data.html
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/UserGuide2016.pdf

Import the data into R

library(tidyverse)
birth_data <- read_csv(file = "./data/L03_US-territories-births.csv") %>% select(-X1)

head(birth_data)

A tibble: 6 x 6
babyID dbwt combgest sex dob_mm cig_rec
<dbl> <dbl> <dbl> <chr> <dbl> <chr>
1 1 2977 37 M 1 N
2 2 3191 41 M 1 Y
3 3 1786 32 F 1 N
4 4 4489 39 M 1 N
5 5 3203 38 M 1 N
6 6 3203 39 F 1 N

Overview of the applied example

• Take a simple random sample from the population of births. We will use this sample to estimate
the proportion of babies who have low birthweight in the population.

• To know how close our estimate is to the true value, we will first calculate the true probability of
an infant being born less that 5 lbs 8 ounces, or 2500 grams, which is the traditional cutoff used to
classify an infant as low birthweight.

• In real life settings, we would not know the true probability, we would only know the value we estimate
from our sample. But here, we can investigate how close the sample estimate is to the true parameter
and see what we can do to make our estimate even better.

• We will see how well we can estimate the true probability based on random samples of varying sizes.

Step 1: Add a variable to the dataset for low birthweight (LBW)

birth_data <- birth_data %>% mutate(lbw = dbwt < 2500)

• What does the variable lbw store?
• lbw stores “logical” values, which means it is either equal to TRUE or FALSE
• Variables that store only two values are called binary variables. They are most commonly stored as

logical data (TRUE/FALSE), numeric (0/1) or categorical (“Yes”/“No”).
• In the above code, R evaluates whether birthweight (dbwt) is less than 2500 grams for each birth. If it

is, then lbw = TRUE for that birth, and if not then lbw = FALSE for that birth.

Step 2: Calculate the proportion of low birthweight infants in overall

population of the US territories
lbw_population <- birth_data %>% summarize(true_prob_lbw = mean(lbw))
lbw_population

A tibble: 1 x 1
true_prob_lbw
<dbl>
1 0.102

• Question: How did we take a mean of values equal to TRUE or FALSE?
• Answer: R treats TRUE as equivalent to 1 and FALSE as equivalent to 0. The mean of a variable coded

as 0 or 1 is the proportion of individuals who have low birthweight.

5

• Remember: we do not usually know the true value because we rarely have data on every individual in a
population.

Step 3: Take a random sample of size n=10

random_sample_n10 <- birth_data %>%
slice_sample(n = 10) %>%
mutate(sample_size = n())

#the last line of code adds the sample size to every row of the new data frame
#we will want to reference this information later

Step 4: Progressively increase the sample size and store those samples

Sample the rows of data using the following sample sizes. Assign your samples each to a different R object.

1. 10
2. 50
3. 100
4. 200
5. 500
6. 1000
7. 5000
8. 10000
9. 36724 (i.e, the entire target population)

Step 4 code

random_sample_n50 <- birth_data %>% slice_sample(n = 50) %>% mutate(sample_size = n())

random_sample_n100 <- birth_data %>% slice_sample(n = 100) %>% mutate(sample_size = n())

random_sample_n200 <- birth_data %>% slice_sample(n = 200) %>% mutate(sample_size = n())

random_sample_n500 <- birth_data %>% slice_sample(n = 500) %>% mutate(sample_size = n())

random_sample_n1000 <- birth_data %>% slice_sample(n = 1000) %>% mutate(sample_size = n())

random_sample_n5000 <- birth_data %>% slice_sample(n = 5000) %>% mutate(sample_size = n())

random_sample_n10000 <- birth_data %>% slice_sample(n = 10000) %>% mutate(sample_size = n())

whole_pop <- birth_data %>% slice_sample(n = nrow(birth_data)) %>% mutate(sample_size = n())

Step 4 side note

By default slice_sample(n=100) takes a sample of size 100 without replacement This means, that each
individual can only be included in the sample at most once.

In future classes, we will introduce methods where we select a sample with replacement. We will talk more
about how this works in the coming weeks.

Step 5: calculate the estimate of the proportion of LBW for each random sample

• For each sample, we want to estimate the proportion of LBW babies to see how much it differs from the
true proportion in the entire population.

6

• We code do this using summarize for each sample and by writing that code ten times, but there is an
easier way.

Step 5: code to estimate the proportions more efficiently

The function bind_rows(df1, df2, df3, ...) can be used to stack multiple data frames (e.g. df1, df2,
df3, . . .) on top of wach other when they have each contain the same variables. Bind together the 9 data
frames created in the previous code chunk using bind_rows()and assign the stacked data frame the name
stacked_samples:
stacked_samples <- bind_rows(random_sample_n10, random_sample_n50,

random_sample_n100, random_sample_n200,
random_sample_n500, random_sample_n1000,
random_sample_n5000, random_sample_n10000,
whole_pop)

Step 5: code to estimate the proportions more efficiently

Estimate the proportion of babies with low birthweight using each of your samples in stacked_samples.
Hint: group_by() and summarize() will come in handy! Assign the output to a data frame called
sample_estimates
sample_estimates <- stacked_samples %>%

group_by(sample_size) %>%
summarize(estimated_proportion_lbw = mean(lbw))

sample_estimates

A tibble: 9 x 2
sample_size estimated_proportion_lbw
<int> <dbl>
1 10 0.1
2 50 0.1
3 100 0.1
4 200 0.115
5 500 0.116
6 1000 0.087
7 5000 0.0978
8 10000 0.104
9 36724 0.102

Step 6: Visualize the results

• Make a line plot of the estimates of the probabilities versus the sample size.
• Add a horizontal line to the line plot at the true value that you are striving to estimate.
• You might also want to add points on top of the line to see exactly where the estimates are.

ggplot(sample_estimates, aes(x = sample_size, y = estimated_proportion_lbw)) +
geom_line(col = "blue") +
geom_point(col = "blue") +
geom_hline(yintercept = lbw_population %>% pull(true_prob_lbw)) +
#scale_x_log10() +
labs(y = "Sample estimate of LBW", x = "Sample size") +
theme_minimal(base_size = 15)

7

0.09

0.10

0.11

0 10000 20000 30000
Sample size

S
am

pl
e

es
tim

at
e

of
 L

B
W

Step 6: Visualize the results

• Because the scale of the x axis is so large, try using scale_x_log10() to convert the x scale to a
logarithm.

ggplot(sample_estimates, aes(x = sample_size, y = estimated_proportion_lbw)) +
geom_line(col = "blue") +
geom_point(col = "blue") +
geom_hline(yintercept = lbw_population %>% pull(true_prob_lbw)) +
scale_x_log10() +
labs(y = "Sample estimate of LBW", x = "Sample size") +
theme_minimal(base_size = 15)

8

0.09

0.10

0.11

10 100 1000 10000
Sample size

S
am

pl
e

es
tim

at
e

of
 L

B
W

Check your understanding!

1) What happens as sample size increases?

2) Will it always be the case that a higher sample size produces an estimate closer to the true value than
a lower sample size?

9

	Learning objectives
	Recall from last class
	Simple random sample (SRS)
	Example of SRS in R
	Example of SRS in R
	Example of SRS in R
	Example of SRS in R
	Example of SRS in R
	Example of SRS in R
	Example of SRS in R
	SRS a fraction in R
	Proportionate Stratified sampling in R
	Proportionate Stratified sampling in R
	Disproportionate Stratified sampling in R
	Multistage sampling
	Applied example: Using a sample to estimate low birthweight in U.S. territories
	Description of the data
	Data dictionary
	Import the data into R
	Overview of the applied example
	Step 1: Add a variable to the dataset for low birthweight (LBW)
	Step 2: Calculate the proportion of low birthweight infants in overall
	Step 3: Take a random sample of size n=10
	Step 4: Progressively increase the sample size and store those samples
	Step 4 code
	Step 4 side note
	Step 5: calculate the estimate of the proportion of LBW for each random sample
	Step 5: code to estimate the proportions more efficiently
	Step 5: code to estimate the proportions more efficiently
	Step 6: Visualize the results
	Step 6: Visualize the results
	Check your understanding!

