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Recap of Chapters 1 and 2

• Histograms and bar charts to plot the distribution of a variable
• Measures of central tendency (mean, median) and spread (standard deviation, IQR)
• Time plots to examine the relationship between a variable and time

Learning objectives for today

• Explore the relationship between two quantitative variables
– Direction, form, strength, outliers
– Association vs. causation

• Make scatter plots to visualize bivariate relationships
– using geom_point()

• Calculate the correlation coefficient to quantify the strength of linear relationships
– using the cor() function

Readings

• Chapter 3 of Baldi and Moore
• Visual Distribution of different correlation coefficients (See section 5.7.4)
• Interpreting Correlation Coefficients (See section 5.7.4)

Explanatory (X) and response (Y) variables

Bi-directional statements:

• “X predicts Y”, or “Y predicts X”

• “X is associated with Y”, or “Y is associated with X”

• These statements don’t comment on causation. Only that two variables are related.

Unidirectional statements:

• “X causes Y”

• This statement is stronger. Not only are X and Y related, X is a cause of Y. That is, if you change X,
then Y will also change. Researchers conduct studies to investigate causal claims.

Which variable is x and which is y?

• In prediction modelling, X denotes the variable used to predict the variable of interest (Y)

• In causal modeling, X denotes the explanatory (independent) variable and Y denotes the response
(dependent) variable

• Graphically, the X variable is on the X (horizontal) axis and the Y variable is the Y (vertical) axis
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Which variable is x and which is y?

1. Each hospital’s rate of hospital-acquired infections, and whether the hospital has implemented a
hand-washing intervention as part of a cluster randomized trial.

2. A person’s leg length and arm length, in centimetres

3. Inches of rain in the growing season and the yield of corn in bushels per day

4. The number of steps a person takes each day and a person’s mental health

How to investigate causation

• Experimentally: Using a randomized controlled trial (RCT) to randomize individuals to different levels
• Observationally: Conduct an observational study that is specifically designed to investigate causation

and reduce the risk of bias
• If we have time, we will talk a bit more about each of these this week. But, to know more, take a

class specifically about clinical trial design or take intro. to epidemiology to learn all about conducting
observational studies.

• In both settings, biostatistics is used to perform the calculations that are informed but the study design

Scatter plots

• Scatter plots are a preferred way to visualize a relationship between two variables
• They are used to evaluate:

– Direction: Positive or negative?
– Form: Linear or curved?
– Strength: How close do the points lie to a line?
– Outliers: Any individuals outside the general pattern?

Bi-directional relationships ex: systolic and diastolic BP

Read in NHANES dataset
# students, you do not need to be familiar with this chunk of code to read in XPT data.

library(SASxport)
nhanes <- read.xport("./data/BPX_I.XPT")
head(nhanes)

## SEQN PEASCCT1 BPXCHR BPAARM BPACSZ BPXPLS BPXPULS BPXPTY BPXML1 BPXSY1
## 1 83732 NA NA 1 4 76 1 1 150 128
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## 2 83733 NA NA 1 4 72 1 1 170 146
## 3 83734 NA NA 1 4 56 1 1 160 138
## 4 83735 NA NA 1 5 78 1 1 150 132
## 5 83736 NA NA 1 3 76 1 1 130 100
## 6 83737 NA NA 1 4 64 1 1 140 116
## BPXDI1 BPAEN1 BPXSY2 BPXDI2 BPAEN2 BPXSY3 BPXDI3 BPAEN3 BPXSY4 BPXDI4 BPAEN4
## 1 70 2 124 64 2 116 62 2 NA NA NA
## 2 88 2 140 88 2 134 82 2 NA NA NA
## 3 46 2 132 44 2 136 46 2 NA NA NA
## 4 72 2 134 68 2 136 70 2 NA NA NA
## 5 70 2 114 54 2 98 56 2 NA NA NA
## 6 58 2 122 58 2 120 60 2 NA NA NA
# View(nhanes) #Viewer provides data labels which are very useful for picking which variables to plot

Bi-directional relationships ex: systolic and diastolic BP

library(ggplot2)
bp_plot <- ggplot(nhanes, aes(x = BPXSY1, y = BPXDI1)) +

geom_point(alpha = 0.1) +
theme_minimal(base_size = 15) +
labs(x = "Systolic BP, mm Hg",

y = "Diastolic BP, mm Hg",
title = "NHANES Data")

Bi-directional relationships ex: systolic and diastolic BP

## Don't know how to automatically pick scale for object of type labelled/integer. Defaulting to continuous.
## Don't know how to automatically pick scale for object of type labelled/integer. Defaulting to continuous.

## Warning: Removed 2399 rows containing missing values (geom_point).
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Bi-directional relationships ex: systolic and diastolic BP

What do we notice from the plot?

• Direction: Positive or negative?

• Form: Linear or curved?
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• Strength: How close do the points lie to a line?

• Outliers: Any individuals outside the general pattern?

Association with a plausible direction: motor boats and manatees

Read in the manatee data set (from the text book):
library(readr)
mana_data <- read_csv("./data/Ch03_Manatee-deaths.csv")

##
## -- Column specification --------------------------------------------------------
## cols(
## year = col_double(),
## powerboats = col_double(),
## deaths = col_double()
## )

Association with a plausible direction: motor boats and manatees

mana_scatter <- ggplot(data = mana_data, aes(x = powerboats, y = deaths)) +
geom_point() +
theme_minimal(base_size = 15)

mana_scatter
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Association with a plausible direction: motor boats and manatees

What do we notice from the plot?

• Direction: Positive or negative?

• Form: Linear or curved?

• Strength: How close do the points lie to a line?

• Outliers: Any individuals outside the general pattern?
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Exercise: Power boats and Manatees

• Add (in thousands) to the x-axis title
• Change the point colour
• Is there a way to incorporate information on year into the graph?

# FOR US TO WRITE IN CLASS

Example 3: Enzyme activity and temperature

• A study examined the activity rate (in micromoles per second) of a digestive enzyme at varying
temperatures.

# this dataset was provided in Baldi and Moore Ed#4 Apply your knowledge 3.4
enzyme_data <- read_csv("./data/Ch03_Enzyme-data.csv")

##
## -- Column specification --------------------------------------------------------
## cols(
## temperature = col_double(),
## rate = col_double()
## )
head(enzyme_data)

## # A tibble: 6 x 2
## temperature rate
## <dbl> <dbl>
## 1 298 0.04
## 2 298 0.05
## 3 298 0.05
## 4 303 0.08
## 5 303 0.08
## 6 303 0.08

Scatter plot for enzyme data

ggplot(enzyme_data, aes(x = temperature, y = rate)) +
geom_point() +
geom_smooth()

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
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Example 4: Gestational age and perinatal mortality

Source: Balchin et al. BMJ. 2007.

Example 5: Lean body mass and metabolic rate

Problem: Is lean body mass (person’s weight after removing the fat) associated with metabolic rate (kilocalories
burned in 24 hours)?

Plan: A diet study was conducted on 12 women and 7 men that measured lean body weight and metabolic
rate for each individual.

Lean body mass and metabolic rate

Data:

• What would the corresponding data frame look like in R?
• How many variables does it have?
• How many rows?

Lean body mass and metabolic rate

# Note: you won't be tested on writing code using tibble::tribble()
# **Do** know how to look at this code and recognize that it is creating a data set

weight_data <- tibble::tribble(
~subject, ~gender, ~mass, ~rate,
1, "M", 62.0, 1792,
2, "M", 62.9, 1666,
3, "F", 36.1, 995,
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4, "F", 54.6, 1425,
5, "F", 48.5, 1396,
6, "F", 42.0, 1418,
7, "M", 47.4, 1362,
8, "F", 50.6, 1502,
9, "F", 42.0, 1256,
10, "M", 48.7, 1614,
11, "F", 40.3, 1189,
12, "F", 33.1, 913,
13, "M", 51.9, 1460,
14, "F", 42.4, 1124,
15, "F", 34.5, 1052,
16, "F", 51.1, 1347,
17, "F", 41.2, 1204,
18, "M", 51.9, 1867,
19, "M", 46.9, 1439

)

Analysis

Exploratory data analysis using scatter plots
weight_scatter <- ggplot(weight_data, aes(x = mass, y = rate)) +

geom_point() +
theme_minimal(base_size = 15)

weight_scatter

900

1100

1300

1500

1700

1900

40 50 60
mass

ra
te

Analysis: Colour the points by gender

#Fill in during class

Analysis: Create separate plots for men and women

#Fill in during class
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Conclusion

Direction:

Form:

Strength:

Outliers:
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Pearson’s correlation

Using just our eyes, we can often say something about whether an association between two variables is weak
or strong.

Attaching package: 'patchwork'

The following object is masked from 'package:MASS':

area
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Pearson’s correlation

• For linear associations, we can use Pearson’s correlation coefficient (denoted by r) to quantify
the strength of a linear relationship between two variables.

• The correlation between x and y is:

r = 1
n − 1

n∑
i=1

(xi − x̄

sx
)(yi − ȳ

sy
)

Intuition about Pearson’s correlation

To understand this formula, first only consider the numerators of the fractions (i.e., xi − x̄ and yi − ȳ). If you
imagine a scatter plot of x and y, we can also add a dashed line at the mean x value of x̄ and a dashed line
line at the mean y value (ȳ):
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Intuition about Pearson’s correlation

r = 1
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• Points in Q2 and Q3 contribute positive products to r
• Points in Q1 and Q4 contribute negative products to r
• The more there are points in Q2 and Q3 vs. Q1 and Q4, the more the value of the correlation coefficient

will be higher and positive
• If you want even more of an explanation see the response to this stack overflow post or take an

intermediate statistics class!

Syntax: Pearson’s correlation using cor()

# Students, if you copy this code chunk, you need to set eval = T in the code chunk header for the code to compile

correlation_coeff <- dataset %>%
summarize(new_var = cor(x_variable, y_variable))

Syntax: Pearson’s correlation using cor()

Remember the manatee plot and the weight plot:
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Syntax: Pearson’s correlation using cor()

Now, calculate the correlations between X and Y for manatees:
library(dplyr)

##
## Attaching package: 'dplyr'

## The following object is masked from 'package:MASS':
##
## select

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
mana_cor <- mana_data %>%

summarize(corr_mana = cor(powerboats, deaths))

mana_cor

## # A tibble: 1 x 1
## corr_mana
## <dbl>
## 1 0.945

Syntax: Pearson’s correlation using cor()

And for the weight data:
weight_cor <- weight_data %>%

summarize(corr_weight = cor(mass, rate))
weight_cor

## # A tibble: 1 x 1
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## corr_weight
## <dbl>
## 1 0.865

Properties of the correlation coefficient

• Always a number between -1 and 1.
– -1: A perfect, negative linear association
– 1: A perfect, positive linear association
– 0: No linear association

• Measures association not causation. Even a very strong association doesn’t mean that one variable
causes the other.

• Is used to measure the association between two quantitative variables.
• Only useful for linear associations!
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Properties of the correlation coefficient

• The correlation coefficient is not resistant to outliers
• E.g., I added two outliers (in red) to the weight_data and recalculated correlation. How much did the

correlation change? (It is labelled on each plot.)

## Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please
## use `guide = "none"` instead.

r = 0.86
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Properties of the correlation coefficient

• Correlations for average measures is typically stronger than correlations for individual data

Corr. of raw data = −0.74

Corr. of means = −0.99
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Recap: What functions did we use?

• geom_scatter(), aes(col = gender) to color points by levels of gender
• summarize() to calculate correlation using cor(var1, var2)

Important concepts

• Determine which variable is explanatory and which is response, or when it doesn’t matter
• Describe the relationship between two variables (form, direction, strength, and outliers)
• Formula for and properties of the correlation coefficient r
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