
Working with health data in R and RStudio

Corinne Riddell

August 27, 2021

Learning objectives for today:

1. What is a data frame
2. How to read a comma separated values (CSV) file using read_csv()
3. Get to know the data using str(), head(), dim(), and names()
4. Manipulate the data frame using the R package dplyr’s main functions:

• rename()
• select()
• arrange()
• filter()
• mutate()
• group_by()
• summarize()

Readings

• There are no chapters from the textbook for this lecture.
• Here are some additional online resources (optional, but helpful!):

– Data Frames
– 15 min intro to dplyr
– Data wrangling cheat sheet

What is a data frame?

• A data frame is a data set.
• We read data into R from common sources like Excel spreadsheets (.xls or .xlsx), text files (.txt), comma

separate value files (.csv), and other formats.
• The simplest format of data contains one row for each individual in the study.
• The first column of the data identifies the individual (perhaps by a name or an ID variable).
• Subsequent columns are variables that have been recorded or measured.

Lake data from Baldi and Moore (B&M)

• Exercise 1.25 from Edition 4 of B&M
• Six rows of data from a study of mercury concentration across 53 lakes
• I’ve added three fabricated rows
• I’ve placed these data in Day-2 folder
• Let’s find it there

readr is a library to import data into R

• To access readr’s functions we load the library like this:

1

https://learningstatisticswithr.com/lsr-0.6.pdf%20(See%20section%204.8)
https://www.youtube.com/watch?v=aywFompr1F4
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

library(readr)

• Click the green arrow to run the code or place your cursor on the line of code and type cmd + enter
(Mac) or control + enter (PC)

• A green rectangle that temporarily appears next to the code shows you that it has run.

read_csv() to load the lake data in R

• read_csv() is a function from the readr library used to import csv files.
• code template: your_data <- read_csv("pathway_to_data.csv")
• The <- is called the assignment operator. It says to save the imported data into an object called

your_data.
lake_data <- read_csv("Data_mercury_lake.csv")

##
-- Column specification --
cols(
lakes = col_character(),
ph = col_double(),
chlorophyll = col_double(),
mercury_in_fish = col_double(),
number_fish_sampled = col_double(),
age_data = col_character()
)

• Anytime you see “##” on the html slides or in the PDF lecture files, the text in those lines are the
output of running the code in the previous line. So the lines above are the output displayed when you
run the read_csv() function.

Exercise 1

1. Execute the above code using either the green arrow or by clicking on it and hitting the keyboard
shortcut (cmd + enter on mac or Ctrl + enter on PC).

2. Note that the data appears in the Environment pane in the top right.
• Notice the number of observations and the number of variables.

3. Click the tiny table icon to the right of the lake_data in the Environment pane to open the Viewer
tab and inspect the data.

Check your understanding!
Four functions to get to know a dataset

• head(your_data): Shows the first six rows of the supplied dataset
• dim(your_data): Provides the number of rows by the number of columns
• names(your_data): Lists the variable names of the columns in the dataset
• str(your_data): Summarizes the above information and more

I use these functions all the time! Multiple times per session when working with data to remind me what the
variable names are, and what the data looks like.

head()

First six rows:
head(lake_data)

2

A tibble: 6 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Alligator 6.1 0.7 1.23 5 year old
2 Annie 5.1 3.2 1.33 7 recent
3 Apopka 9.1 128. 0.04 6 recent
4 Blue Cypress 6.9 3.5 0.44 12 recent
5 Brick 4.6 1.8 1.2 12 year old
6 Bryant 7.3 44.1 0.27 14 year old

dim()

dim(lake_data)

[1] 9 6

Are there 9 rows or columns of data?

names()

names(lake_data)

[1] "lakes" "ph" "chlorophyll"
[4] "mercury_in_fish" "number_fish_sampled" "age_data"

str()

str(lake_data)

spec_tbl_df [9 x 6] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ lakes : chr [1:9] "Alligator" "Annie" "Apopka" "Blue Cypress" ...
$ ph : num [1:9] 6.1 5.1 9.1 6.9 4.6 7.3 5.5 7.3 8.2
$ chlorophyll : num [1:9] 0.7 3.2 128.3 3.5 1.8 ...
$ mercury_in_fish : num [1:9] 1.23 1.33 0.04 0.44 1.2 0.27 0.33 0.17 1.87
$ number_fish_sampled: num [1:9] 5 7 6 12 12 14 5 8 3
$ age_data : chr [1:9] "year old" "recent" "recent" "recent" ...
- attr(*, "spec")=
.. cols(
.. lakes = col_character(),
.. ph = col_double(),
.. chlorophyll = col_double(),
.. mercury_in_fish = col_double(),
.. number_fish_sampled = col_double(),
.. age_data = col_character()
..)

Using dplyr functions for data manipulation

• rename()
• select()
• arrange()
• filter()
• mutate()
• group_by()
• summarize()

3

Load the dplyr library to access the functions

library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union

• These messages mean that some functions (e.g., filter()) share names with functions from other libraries.
So, when we use filter() we will now use the dplyr version because the stats library version has
been masked.

• You don’t need to worry about masking for now.

Function 1: rename()

What do you think rename does?

First print the names of the variables:
names(lake_data)

[1] "lakes" "ph" "chlorophyll"
[4] "mercury_in_fish" "number_fish_sampled" "age_data"

Run the rename() function and assign it to lake_data_tidy:
lake_data_tidy <- rename(lake_data, name_of_lake = lakes)

Then reprint the variable names:
names(lake_data_tidy)

[1] "name_of_lake" "ph" "chlorophyll"
[4] "mercury_in_fish" "number_fish_sampled" "age_data"

Function 1: rename() multiple variables at once

You can rename() multiple variables at once:
lake_data_tidy <- rename(lake_data,

name_of_lake = lakes,
ph_level = ph)

Code template for rename() function

new_dataset <- rename(old_dataset, new_name = old_name)

Another way to write the above code is to use the pipe operator (%>%):
new_dataset <- old_dataset %>% rename(new_name = old_name)

The pipe will become very useful in a few slides

4

Function 2: select()

Based on the output below, what do you think select() does?
smaller_data <- select(lake_data, lakes, ph, chlorophyll)
names(smaller_data)

[1] "lakes" "ph" "chlorophyll"

Function 2: select()

• We use select() to select a subset of variables.
• This is very handy if we inherit a large dataset with several variables that we do not need.

Function 2: “negative select()”

We can also use “negative select()” to deselect variables. Suppose we wanted to keep all variables except
for age_data:
smaller_data_2 <- select(lake_data, - age_data)
names(smaller_data_2)

[1] "lakes" "ph" "chlorophyll"
[4] "mercury_in_fish" "number_fish_sampled"

We place a negative sign in front of age_data to remove it from the dataset.

Rewrite using the pipe operator

smaller_data <- lake_data %>% select(lakes, ph, chlorophyll)
smaller_data_2 <- lake_data %>% select(- age_data)

• Going forward, we will use the pipe operator to write code using any dplyr functions
• This is because we can use the pipe to stack many dplyr functions in a row

Function 3: arrange()

What does arrange do? First type View(lake_data) to look at the original data. Then run the code and
examine its output below. What is different?:
lake_data %>% arrange(ph)

A tibble: 9 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Brick 4.6 1.8 1.2 12 year old
2 Annie 5.1 3.2 1.33 7 recent
3 Catalina 5.5 13.2 0.33 5 recent
4 Alligator 6.1 0.7 1.23 5 year old
5 Blue Cypress 6.9 3.5 0.44 12 recent
6 Bryant 7.3 44.1 0.27 14 year old
7 Four Mile 7.3 0.4 0.17 8 recent
8 Henry 8.2 12.2 1.87 3 year old
9 Apopka 9.1 128. 0.04 6 recent

5

Function 3: arrange() in descending order

lake_data %>% arrange(- ph)

A tibble: 9 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Apopka 9.1 128. 0.04 6 recent
2 Henry 8.2 12.2 1.87 3 year old
3 Bryant 7.3 44.1 0.27 14 year old
4 Four Mile 7.3 0.4 0.17 8 recent
5 Blue Cypress 6.9 3.5 0.44 12 recent
6 Alligator 6.1 0.7 1.23 5 year old
7 Catalina 5.5 13.2 0.33 5 recent
8 Annie 5.1 3.2 1.33 7 recent
9 Brick 4.6 1.8 1.2 12 year old

Function 3: arrange() by two variables

lake_data %>% arrange(age_data, ph)

A tibble: 9 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Annie 5.1 3.2 1.33 7 recent
2 Catalina 5.5 13.2 0.33 5 recent
3 Blue Cypress 6.9 3.5 0.44 12 recent
4 Four Mile 7.3 0.4 0.17 8 recent
5 Apopka 9.1 128. 0.04 6 recent
6 Brick 4.6 1.8 1.2 12 year old
7 Alligator 6.1 0.7 1.23 5 year old
8 Bryant 7.3 44.1 0.27 14 year old
9 Henry 8.2 12.2 1.87 3 year old

Function 4: mutate()

• mutate() is one of the most useful functions!
• It is used to add new variables to the dataset. Suppose that someone told you that the number of

fish sampled was actually in hundreds, such that 5 is actually 500. You can use mutate to add a new
variable to your dataset that is in the hundreds:

lake_data_new_fish <- lake_data %>%
mutate(actual_fish_sampled = number_fish_sampled * 100)

lake_data_new_fish

A tibble: 9 x 7
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Alligator 6.1 0.7 1.23 5 year old
2 Annie 5.1 3.2 1.33 7 recent
3 Apopka 9.1 128. 0.04 6 recent
4 Blue Cypress 6.9 3.5 0.44 12 recent
5 Brick 4.6 1.8 1.2 12 year old
6 Bryant 7.3 44.1 0.27 14 year old

6

7 Catalina 5.5 13.2 0.33 5 recent
8 Four Mile 7.3 0.4 0.17 8 recent
9 Henry 8.2 12.2 1.87 3 year old
... with 1 more variable: actual_fish_sampled <dbl>

Use %>% to append several lines of code together

• We have saved many of new datasets in our environment!
• If these datasets were larger, they would take up a lot of space.
• Rather than saving a new dataset each time, we can make successive changes to one dataset like this:

tidy_lake_data <- lake_data %>%
rename(name_of_lake = lakes) %>%
mutate(actual_fish_sampled = number_fish_sampled * 100) %>%
select(- age_data, - number_fish_sampled)

• When you see %>%, say the words “and then. . . ”. For example, “Take lake_data and then rename
lakes to name_of_lake, and then mutate. . . ”

Use %>% to “pipe” several lines of code together

tidy_lake_data <- lake_data %>%
rename(lake_name = lakes) %>%
mutate(actual_fish_sampled = number_fish_sampled * 100) %>%
select(- age_data, - number_fish_sampled)

tidy_lake_data

A tibble: 9 x 5
lake_name ph chlorophyll mercury_in_fish actual_fish_sampled
<chr> <dbl> <dbl> <dbl> <dbl>
1 Alligator 6.1 0.7 1.23 500
2 Annie 5.1 3.2 1.33 700
3 Apopka 9.1 128. 0.04 600
4 Blue Cypress 6.9 3.5 0.44 1200
5 Brick 4.6 1.8 1.2 1200
6 Bryant 7.3 44.1 0.27 1400
7 Catalina 5.5 13.2 0.33 500
8 Four Mile 7.3 0.4 0.17 800
9 Henry 8.2 12.2 1.87 300

Function 5: filter()

Filter is another very useful function! What might filter() do?

Function 5: filter()ing on numeric variables

We use filter to select which rows we want to keep in the dataset. Suppose you were only interested in lakes
with ph levels of 7 or higher.
lake_data_filtered <- lake_data %>% filter(ph > 7)
lake_data_filtered

A tibble: 4 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>

7

1 Apopka 9.1 128. 0.04 6 recent
2 Bryant 7.3 44.1 0.27 14 year old
3 Four Mile 7.3 0.4 0.17 8 recent
4 Henry 8.2 12.2 1.87 3 year old

Check your understanding!
Function 5: filter()ing on character/string variables

Let’s try a few more ways to filter() the data set since subsetting data is so important:
lake_data %>% filter(age_data == "recent")

A tibble: 5 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Annie 5.1 3.2 1.33 7 recent
2 Apopka 9.1 128. 0.04 6 recent
3 Blue Cypress 6.9 3.5 0.44 12 recent
4 Catalina 5.5 13.2 0.33 5 recent
5 Four Mile 7.3 0.4 0.17 8 recent

• == is read as “is equal to”
lake_data %>% filter(age_data != "recent")

A tibble: 4 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Alligator 6.1 0.7 1.23 5 year old
2 Brick 4.6 1.8 1.2 12 year old
3 Bryant 7.3 44.1 0.27 14 year old
4 Henry 8.2 12.2 1.87 3 year old

• != is read as “is not equal to”

Function 5: filter()ing on character/string variables

lake_data %>% filter(lakes %in% c("Alligator", "Blue Cypress"))

A tibble: 2 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Alligator 6.1 0.7 1.23 5 year old
2 Blue Cypress 6.9 3.5 0.44 12 recent

• %in% is the “in” operator. We are selecting rows where the variable lakes belongs to the specified list.
• The c() combines “Alligator” and “Blue Cypress” into a list

Function 5: multiple filter()s at once

lake_data %>% filter(ph > 6, chlorophyll > 30)

A tibble: 2 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Apopka 9.1 128. 0.04 6 recent

8

2 Bryant 7.3 44.1 0.27 14 year old
#this is the same as:
lake_data %>% filter(ph > 6 & chlorophyll > 30)

A tibble: 2 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Apopka 9.1 128. 0.04 6 recent
2 Bryant 7.3 44.1 0.27 14 year old

• A comma or the “and” operator (&) are equivalent. Here they say, filter the dataset and keep only rows
with ph > 6 AND chlorophyll > 30

Function 5: filter() using “or”

lake_data %>% filter(ph > 6 | chlorophyll > 30)

A tibble: 6 x 6
lakes ph chlorophyll mercury_in_fish number_fish_sampled age_data
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Alligator 6.1 0.7 1.23 5 year old
2 Apopka 9.1 128. 0.04 6 recent
3 Blue Cypress 6.9 3.5 0.44 12 recent
4 Bryant 7.3 44.1 0.27 14 year old
5 Four Mile 7.3 0.4 0.17 8 recent
6 Henry 8.2 12.2 1.87 3 year old

• | is the OR operator. At least one of ph > 6 or chlorophyll > 30 needs to be true.

Functions 6 and 7: group_by() and summarize()

Let’s execute the following code and see what it does.
lake_data %>%

group_by(age_data) %>%
summarize(mean_ph = mean(ph))

A tibble: 2 x 2
age_data mean_ph
<chr> <dbl>
1 recent 6.78
2 year old 6.55

What happened?

Functions 6 and 7: group_by() and summarize()

Another one:
lake_data %>%

group_by(age_data) %>%
summarize(mean_ph = mean(ph),

standard_deviation_ph = sd(ph))

A tibble: 2 x 3
age_data mean_ph standard_deviation_ph
<chr> <dbl> <dbl>

9

1 recent 6.78 1.59
2 year old 6.55 1.56

Recap: What functions did we use?

1. library() to load readr and dplyr.
2. read_csv() to read csv files from a directory.
3. head(), str(), dim(), and names() to look at our imported data.
4. rename() to rename variables in a data frame.
5. select() to select a subset of variables.
6. arrange() to sort a dataset according to one or more variables.
7. mutate() to create new variables.
8. filter() to select a subset of rows.
9. group_by() and summarize() to group the data by a categorial variable and calculate a statistic.

10. mean() and sd() to calculate the mean and standard deviation of variables.

Recap: What operators did we use?

1. Assignment arrow (<-): This is our most important operator!
2. Greater than (>) There are also:

• Less than (<)
• Greater than or equal to (>=), and,
• Less than or equal to: (<=)

3. Is equal to (==), and is not equal to (!=)
4. %in% to select from a list, where the list is created using c(), i.e., lakes %in% c("Alligator",

"Annie")

How to export from datahub and save onto your own computer

Some of you may want to edit this file in R markdown by adding notes, etc. In that case, you can make your
edits and save your updated file on datahub. You can additionally save your updated file locally on your
computer. Here’s how to do that:

1. In the File view window, click the checkbox beside the file you’d like to export and the click More >
Export. This will download the file to your computer’s downloads folder.

2. You may want to Export slides as a PDF or MS Word document. To do that, you first need to change
“slidy_presentation” to “pdf_document” or “word_document” in the file header (line 5 of the file, after
the word “output:”). Make sure to keep the single space between “output:” and your option or it won’t
compile!

3. Word documents automatically download when you Knit them. PDF documents can be exported from
the File viewer by following step 1.

10

	Learning objectives for today:
	Readings
	What is a data frame?
	Lake data from Baldi and Moore (B&M)
	readr is a library to import data into R
	read_csv() to load the lake data in R
	Exercise 1
	Check your understanding!
	Four functions to get to know a dataset
	head()
	dim()
	names()
	str()
	Using dplyr functions for data manipulation
	Load the dplyr library to access the functions
	Function 1: rename()
	Function 1: rename() multiple variables at once
	Code template for rename() function
	Function 2: select()
	Function 2: select()
	Function 2: ``negative select()''
	Rewrite using the pipe operator
	Function 3: arrange()
	Function 3: arrange() in descending order
	Function 3: arrange() by two variables
	Function 4: mutate()
	Use %>% to append several lines of code together
	Use %>% to ``pipe'' several lines of code together
	Function 5: filter()
	Function 5: filter()ing on numeric variables

	Check your understanding!
	Function 5: filter()ing on character/string variables
	Function 5: filter()ing on character/string variables
	Function 5: multiple filter()s at once
	Function 5: filter() using ``or''
	Functions 6 and 7: group_by() and summarize()
	Functions 6 and 7: group_by() and summarize()
	Recap: What functions did we use?
	Recap: What operators did we use?
	How to export from datahub and save onto your own computer

