Problem Set 1: Manipulation of mammalian sleep data

Your name and student ID

Today’s date

BEGIN ASSIGNMENT
requirements: requirements.R
generate: true
files:

- data

Instructions

e Solutions will be released on Wednesday, September 1st.
o This semester, problem sets are for practice only and will not be turned in for marks.

Helpful hints:

e Every function you need to use was taught during lecture! So you may need to revisit the lecture code
to help you along by opening the relevant files on Datahub. Alternatively, you may wish to view the
code in the condensed PDFs posted on the course website. Good luck!

o Knit your file early and often to minimize knitting errors! If you copy and paste code for the slides,
you are bound to get an error that is hard to diagnose. Typing out the code is the way to smooth
knitting! We recommend knitting your file each time after you write a few sentences/add a new code
chunk, so you can detect the source of knitting errors more easily. This will save you and the GSIs
from frustration!

e It is good practice to not allow your code to run off the page. To avoid this, have a look at your knitted
PDF and ensure all the code fits in the file. If it doesn’t look right, go back to your .Rmd file and add
spaces (new lines) using the return or enter key so that the code runs onto the next line.

Begin by knitting this document by pushing the “Knit” button above. As you fill in code and text in the
document, you can re-knit (push the button again) and see how the document changes. It is important to
re-knit often, because if there is any error in your code, the file will not generate a PDF, so our advice is to
knit early and often!

Using dplyr to investigate sleep times in mammals
The data file sleep.csv contains the sleeptimes and weights for a set of mammals. Hit the green arrow icon
in the line below to execute the two lines of code in the code chunk, or execute them line by line by placing

your cursor on the first line and hitting cmd + enter on Mac or ctrl + enter on PC.

library(dplyr)

Warning: package ’dplyr’ was built under R version 4.0.5

##
Attaching package: ’dplyr’

The following objects are masked from ’package:stats’:
#i#
filter, lag

The following objects are masked from ’package:base’:

##
intersect, setdiff, setequal, union
library(readr)

sleep <- read_csv("data/sleep.csv")

##
-- Column specification ----------—""------""""""""""""""""————
cols(

name = col_character(),

genus = col_character(),

vore = col_character(),

order = col_character(),

conservation = col_character(),
sleep_total = col_double(),
sleep_rem = col_double(),
sleep_cycle = col_double(),
awake = col_double(),

brainwt = col_double(),

bodywt = col_double()

#i#)

e The library command loads the library dplyr into memory.
e The readr library contains functions to read in the dataset.
e The dplyr library contains functions we will use to manipulate data.

Notice that an object called sleep appeared in the Environment tab under “Data”.

1. [2 points] Use four useful functions discussed in lecture to examine the sleep data set:
Text inside a code chunk that begins with "#" is called a comment.

We sometimes use comments to ezxplain code to you in plain English.

Write your four functions below these comments, replacing the placeholder

text "<<<KYOUR CODE HERE>>>>". Remember, code does *not* begin with a "#"

"<<<<YOUR CODE HERE>>>>"

[1] "<<<<YOUR CODE HERE>>>>"

"<<<<YOUR CODE HERE>>>>"

[1] "<<<<YOUR CODE HERE>>>>"

"<<<<YOUR CODE HERE>>>>"

[1] "<<<<YOUR CODE HERE>>>>"

"<<<<YOUR CODE HERE>>>>"

[1] "<<<<YOUR CODE HERE>>>>"

Then, assign pl to a wvector of your function names, in alphabetical order.
For example, assigning p0 to a wvector of fruits looks like this:
p0 <- c("apple”, "banana", "orange')

pl <- c("dim", "head", '"names", "str") #SOLUTION

BEGIN QUESTION
name: pl
manual: false
points: 2

Test
testthat: :expect_true(length(pl)== 4,
info = "pla: Checking pl has 4 items in a list")

Test
testthat: :expect_true(pl[1] == "dim" & p1[2] == "head" & p1[3] == "names" & p1[4] == "str",
info = "plb: Checking the names of the 4 functions in alphabetical order")

Description of the variables found in the sleep dataset:

Column name Description

name common name
genus taxonomic rank

vore carnivore, omnivore or herbivore?

order taxonomic rank

conservation the conservation status of the mammal
sleep_ total total amount of sleep, in hours

sleep_ rem Rapid eye movement (REM) sleep, in hours
sleep_ cycle length of sleep cycle, in hours

awake amount of time spent awake, in hours
brainwt brain weight in kilograms

bodywt body weight in kilograms

2. [2 points] Write code to select a set of columns. Specifically select the awake, brainwt, and

bodywt columns. Assign this smaller dataset to a data frame called sleep_small

sleep_small <- select(sleep, awake, brainwt, bodywt) #SOLUTION

BEGIN QUESTION
name: p2
manual: false
points: 2

Test
testthat: :expect_true(is.data.frame(sleep_small),
"p2a: Checking sleep_small is a dataframe")

Test
testthat: :expect_true(ncol(sleep_small) == 3,
"p2b: Checking sleep_small has 3 columns")
Test
testthat: :expect_true(all (names(sleep_small) == c("awake", "brainwt", "bodywt")),

"p2c: Checking sleep_small has 'awake', 'brainwt'

, and 'bodywt'")

3. [1 point] To select a range of columns by name, use the ‘:’ (colon) operator. Redo the
selection for question 1, but use the colon operator. Assign this to sleep_small_colon. Note
that this returns the same data frame as the previous problem, but is not recommended in
practice because it depends on the ordering of the columns and isn’t explicit in the columns that
are selected, whereas selecting columns by name offers much higher readability for someone
else looking at your code later on.

sleep_small_colon <- sleep %>}, select(awake:bodywt) #SOLUTION

BEGIN QUESTION
name: p3
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_small_colon),
"p3a: Checking sleep_small_colon is a dataframe")

Test

testthat: :expect_true(ncol(sleep_small_colon) == 3,
"p3b: Checking sleep_small_colon has 3 columns")

Test

testthat: :expect_true(all(names(sleep_small_colon) == c("awake", "brainwt", "bodywt")),
"p3c: Checking sleep_small_colon has 'awake', 'brainwt', and 'bodywt'")

4. [1 point] From the original dataset sleep select all the columns except for the vore variable.
Assign this to sleep_no_vore.

sleep_no_vore <- sleep %>} select(-vore) #SOLUTION

BEGIN QUESTION
name: p4
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_no_vore),

info = "p4a: Checking sleep_small_colon is a dataframe")
Test
testthat: :expect_true(ncol(sleep_no_vore) == 10,

info = "p4b: Checking sleep_small_vore has 10 columns")
Test

testthat: :expect_true(! ("vore" %inj, names(sleep_no_vore)),
info = "p4c: Checking sleep_no_vore has no columns with 'vore'")

5. [1 point] Run the following chunk of code.

select(sleep, starts_with("sl1"))

A tibble: 83 x 3
sleep_total sleep_rem sleep_cycle

<dbl> <dbl> <dbl>
1 12.1 NA NA

2 17 1.8 NA

3 14.4 2.4 NA

4 14.9 2.3 0.133
5 4 0.7 0.667
6 14.4 2.2 0.767
7 8.7 1.4 0.383
8 7 NA NA

9 10.1 2.9 0.333
10 3 NA NA

... with 73 more rows

What does it return? Copy your choice and assign it to p5

p5 <- "returns the number of columns that start with sl”
p5 <- "returns all columns that start with sl"

p5 <- "returns all rows that start with sl”

p5 <- "returns all animals whose names start with sl""

p5 <- "returns all columns that start with sl1" #SOLUTION

BEGIN QUESTION
name: pb
manual: false
points: 1

Test

testthat: :expect_true(pbs == "returns all columns that start with s1",
info = "Checking response...")

select(sleep, starts_with("sl1"))

A tibble: 83 x 3
sleep_total sleep_rem sleep_cycle

<dbl> <dbl> <dbl>
#t 1 12.1 NA NA

2 17 1.8 NA

#t 3 14.4 2.4 NA

#t 4 14.9 2.3 0.133
5 4 0.7 0.667
6 14.4 2.2 0.767
7 8.7 1.4 0.383
##t 8 7 NA NA

9 10.1 2.9 0.333
10 3 NA NA

... with 73 more rows

6. [1 point] Rewrite the previous chunk of code using the pipe operator.

sleep_sl.

sleep_sl <- sleep %>} select(starts_with("s1")) #SOLUTION
BEGIN QUESTION

name: p6

manual: false

points: 1

Test

testthat: :expect_true(is.data.frame(sleep_sl),
"p6a: Checking sleep_sl is a dataframe")

Test
testthat: :expect_true(ncol(sleep_sl) == 3,

"p6b: Checking sleep_sl has 3 columns")
Test

testthat: :expect_true(("sleep_total" %in}, names(sleep_sl)) &&
("sleep_rem" %inj, names(sleep_sl)) &&
("sleep_cycle" %in}, names(sleep_sl)),

Assign this to

"p6c: Checking sleep_sl has the 3 columns that start with s1")

7. [1 point] From the original sleep dataset, filter the rows for mammals that sleep a total of
more than 16 hours. Assign this to sleep_overi16.

sleep_overl6 <- sleep %>% filter(sleep_total > 16) #SOLUTION

BEGIN QUESTION
name: p7
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_overl6),

info = "p7a: Checking sleep_overl6 is a dataframe")
Test
testthat: :expect_true(ncol(sleep_overl6) == 11,

info = "p7b: Checking sleep_overl6 has 11 columns")
Test
testthat: :expect_true(nrow(sleep_overl6) == 8,

info = "p7c: Checking sleep_overl6 has 8 rows")

8. [2 points] Filter the rows for mammals that sleep a total of more than 16 hours and have a
body weight of greater than 1 kilogram. Assign this to sleep_mammals.

sleep_mammals <- sleep %>} filter(sleep_total > 16 & bodywt > 1) #SOLUTION
BEGIN QUESTION

name: p8

manual: false

points: 2

Test

testthat: :expect_true(is.data.frame(sleep_mammals),
"p8a: Checking sleep_mammals is a dataframe")

Test
testthat: :expect_true(ncol(sleep_mammals) == 11,
"p8b: Chekcing sleep_mammals has 11 columns")
Test
testthat: :expect_true(nrow(sleep_mammals) == 3,

"p8c: Checking sleep_mammals has 3 rows")

10

9. [1 point] Suppose you are specifically interested in the sleep of horses and giraffes.
the original sleep dataset, assign sleep_hg to a data frame for horses and giraffes only.

sleep_hg <- sleep %>} filter(name %in% c("Horse", "Giraffe")) #SOLUTION

BEGIN QUESTION
name: p9
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_hg),
info = "p9a: Checking sleep_hg is a dataframe")

Test
testthat: :expect_true(ncol(sleep_hg) == 11,

info = "p9b: Checking sleep_hg has 11 columns")
Test

testthat: :expect_true(nrow(sleep_hg) == 2,
info = "p9c: Checking sleep_hg has 2 rows")

Test
testthat: :expect_true("Horse" %inj), sleep_hg$name &&

"Giraffe" %in}% sleep_hg$name,
info = "p9d: Checking sleep_hg has the correct rows")

11

From

10. [1 point] From the original dataset,order the dataset by sleep time from shortest sleep
time to longest sleep time. Assign this to sleep_time.

sleep_time <- sleep %>, arrange(sleep_total) #SOLUTION

BEGIN QUESTION
name: pl0
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_time),

info = "pl0a: Checking sleep_time is a dataframe")
Test
testthat: :expect_true(ncol(sleep_time) == 11,

info = "plOb: Checking sleep_time has 11 columns")
Test
testthat: :expect_true(nrow(sleep_time) == 83,

info = "plOc: Checking sleep_time has 83 rows")

12

11. [1 point] Now order for longest sleep time to shortest sleep time. Assign this to sleep_rev.

sleep_rev <- sleep %>% arrange(-sleep_total) #SOLUTION

BEGIN QUESTION
name: pll
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_rev),

info = "plla: Checking sleep_rev is a dataframe")
Test
testthat: :expect_true(ncol(sleep_rev) == 11,

info = "pllb: Checking sleep_rev has 11 columns")
Test
testthat: :expect_true(nrow(sleep_rev) == 83,

info = "pllc: Checking sleep_rev has 83 rows")

13

12. [2 points] Suppose you are interested in the order of sleep time, but according to whether
the animal is a carnivore, herbivore, or omnivore. Rewrite the above statement to order sleep
time according to the type of “-vore” that then animal is. Call this “sleep_ time_ rev”:

sleep_time_rev <- sleep %>% arrange(vore, -sleep_total) #SOLUTION

BEGIN QUESTION
name: pl2
manual: false
points: 2

Test

testthat: :expect_true(is.data.frame(sleep_time_rev),
"pi12a: Checking sleep_time_rev is a dataframe")

Test
testthat: :expect_true(ncol(sleep_time_rev) == 11,
"pl2b: Checking sleep_time_rev has 11 columns")
Test
testthat: :expect_true(nrow(sleep_time_rev) == 83,

"p12c: Checking sleep_time_rev has 83 rows")

14

13. [1 point] Create a new column called rem_proportion which is the ratio of rem sleep to
total amount of sleep. Assign this new data frame to sleep_ratio from sleep data.

sleep_ratio <- sleep %>/ mutate(rem_proportion = sleep_rem/sleep_total) #SOLUTION

BEGIN QUESTION
name: pl3
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_ratio),

info = "pl3a: Checking sleep_ratio is a dataframe")
Test
testthat: :expect_true(ncol(sleep_ratio) == 12,
info = "p13b: Checking sleep_time_rev has 12 collumns")
Test
testthat: :expect_true(nrow(sleep_ratio) == 83,

info = "pl13c: Checking sleep_ratio has 83 rows")

15

14. [1 point] Add a second column called bodywt_grams which is the bodywt column in grams.

sleep_r_bw <- sleep %>} mutate(rem proportion = sleep_rem/sleep_total, bodywt_ grams = bodywt * 1000) #S

BEGIN QUESTION
name: plé
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(sleep_r_bw),

info = "pl4a: Checking sleep_r_bw is a dataframe")
Test
testthat: :expect_true(ncol(sleep_r_bw) == 13,

info = "pl4b: Checking sleep_r_bw has 13 columns")
Test
testthat: :expect_true(nrow(sleep_r_bw) == 83,

info = "pl4c: Checking sleep_r_bw has 83 rows")

16

15. [1 point] Calculate the average sleep time across all the animals in the dataset using a
dplyr function and assign it to the variable avg_sleep_time. Your answer should be a data
frame of 1 observation and 1 variable called sleep_avg

avg_sleep_time <- sleep %>}, summarize(mean(sleep_total)) #SOLUTION

BEGIN QUESTION
name: plb
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(avg_sleep_time),
"piba: Checking avg_sleep_time is a dataframe")

Test
testthat: :expect_true(ncol(avg_sleep_time) == 1 &&
nrow(avg_sleep_time) == 1,
"plbb: Checking avg_sleep_time has 1 row and 1 column")
Test

testthat::expect_true(is.numeric(avg_sleep_time$sleep_avg),
"p15c: Checking sleep_avg column is numeric")

Test

testthat: :expect_true(all.equal(avg_sleep_time$sleep_avg, 10.43373, 0.01),
"p15d: Checking sleep avg column is 10.4337")

17

16. [2 points] Calculate the average sleep time for each type of “-vore”. Hint: you’ll need to
use two dplyr functions! The column names should be vore and sleep_avg. Call this dataframe
avg_ by_ vore

. = " # BEGIN PROMPT
avg_by_vore <- NULL # YOUR CODE HERE
" # END PROMPT

BEGIN SOLUTION NO PROMPT
avg_by_vore <- sleep %>%
group_by (vore) %>%
summarize(sleep_avg = mean(sleep_total))
END SOLUTION

BEGIN QUESTION
name: pl6
manual: false
points: 1

Test

testthat: :expect_true(is.data.frame(avg_by_vore),

info = "pl6a: Checking avg_by_vore is a dataframe")
Test
testthat: :expect_true(ncol (avg_by_vore) == 2 &&

nrow(avg_by_vore) == b,

info = "pl6b: Checking avg_by_vore has 5 rows and 2 columns")
Test
testthat: :expect_true(identical (names(avg_by_vore), c("vore", "sleep_avg")),

info = "pl6c: Checking column names are vore and sleep_avg")
END

18

	Instructions
	Using dplyr to investigate sleep times in mammals
	END

